feat(utils): add common machine learning utility functions
This commit is contained in:
106
utils/tools.py
Normal file
106
utils/tools.py
Normal file
@ -0,0 +1,106 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
import matplotlib.pyplot as plt
|
||||
import time
|
||||
|
||||
plt.switch_backend('agg')
|
||||
|
||||
|
||||
def adjust_learning_rate(optimizer, epoch, args):
|
||||
# lr = args.learning_rate * (0.2 ** (epoch // 2))
|
||||
if args.lradj == 'type1':
|
||||
lr_adjust = {epoch: args.learning_rate * (0.5 ** ((epoch - 1) // 1))}
|
||||
elif args.lradj == 'type2':
|
||||
lr_adjust = {
|
||||
2: 5e-5, 4: 1e-5, 6: 5e-6, 8: 1e-6,
|
||||
10: 5e-7, 15: 1e-7, 20: 5e-8
|
||||
}
|
||||
elif args.lradj == 'type3':
|
||||
lr_adjust = {epoch: args.learning_rate if epoch < 3 else args.learning_rate * (0.9 ** ((epoch - 3) // 1))}
|
||||
|
||||
# Sigmoid learning rate decay
|
||||
elif args.lradj == 'sigmoid':
|
||||
k = 0.5 # logistic growth rate
|
||||
s = 10 # decreasing curve smoothing rate
|
||||
w = 10 # warm-up coefficient
|
||||
lr_adjust = {epoch: args.learning_rate / (1 + np.exp(-k * (epoch - w))) - args.learning_rate / (1 + np.exp(-k/s * (epoch - w*s)))}
|
||||
|
||||
elif args.lradj == 'constant':
|
||||
lr_adjust = {epoch: args.learning_rate}
|
||||
elif args.lradj == '3':
|
||||
lr_adjust = {epoch: args.learning_rate if epoch < 10 else args.learning_rate*0.1}
|
||||
elif args.lradj == '4':
|
||||
lr_adjust = {epoch: args.learning_rate if epoch < 15 else args.learning_rate*0.1}
|
||||
elif args.lradj == '5':
|
||||
lr_adjust = {epoch: args.learning_rate if epoch < 25 else args.learning_rate*0.1}
|
||||
elif args.lradj == '6':
|
||||
lr_adjust = {epoch: args.learning_rate if epoch < 5 else args.learning_rate*0.1}
|
||||
|
||||
if epoch in lr_adjust.keys():
|
||||
lr = lr_adjust[epoch]
|
||||
for param_group in optimizer.param_groups:
|
||||
param_group['lr'] = lr
|
||||
print('Updating learning rate to {}'.format(lr))
|
||||
|
||||
|
||||
class EarlyStopping:
|
||||
def __init__(self, patience=7, verbose=False, delta=0):
|
||||
self.patience = patience
|
||||
self.verbose = verbose
|
||||
self.counter = 0
|
||||
self.best_score = None
|
||||
self.early_stop = False
|
||||
self.val_loss_min = np.Inf
|
||||
self.delta = delta
|
||||
|
||||
def __call__(self, val_loss, model, path):
|
||||
score = -val_loss
|
||||
if self.best_score is None:
|
||||
self.best_score = score
|
||||
self.save_checkpoint(val_loss, model, path)
|
||||
elif score < self.best_score + self.delta:
|
||||
self.counter += 1
|
||||
print(f'EarlyStopping counter: {self.counter} out of {self.patience}')
|
||||
if self.counter >= self.patience:
|
||||
self.early_stop = True
|
||||
else:
|
||||
self.best_score = score
|
||||
self.save_checkpoint(val_loss, model, path)
|
||||
self.counter = 0
|
||||
|
||||
def save_checkpoint(self, val_loss, model, path):
|
||||
if self.verbose:
|
||||
print(f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...')
|
||||
torch.save(model.state_dict(), path + '/' + 'checkpoint.pth')
|
||||
self.val_loss_min = val_loss
|
||||
|
||||
|
||||
class dotdict(dict):
|
||||
"""dot.notation access to dictionary attributes"""
|
||||
__getattr__ = dict.get
|
||||
__setattr__ = dict.__setitem__
|
||||
__delattr__ = dict.__delitem__
|
||||
|
||||
|
||||
class StandardScaler():
|
||||
def __init__(self, mean, std):
|
||||
self.mean = mean
|
||||
self.std = std
|
||||
|
||||
def transform(self, data):
|
||||
return (data - self.mean) / self.std
|
||||
|
||||
def inverse_transform(self, data):
|
||||
return (data * self.std) + self.mean
|
||||
|
||||
|
||||
def visual(true, preds=None, name='./pic/test.pdf'):
|
||||
"""
|
||||
Results visualization
|
||||
"""
|
||||
plt.figure()
|
||||
plt.plot(true, label='GroundTruth', linewidth=2)
|
||||
if preds is not None:
|
||||
plt.plot(preds, label='Prediction', linewidth=2)
|
||||
plt.legend()
|
||||
plt.savefig(name, bbox_inches='tight')
|
Reference in New Issue
Block a user