feat(memory): integrate Mem0 for enhanced conversational memory
Some checks failed
Build and Push Docker / build-and-push (push) Has been cancelled
Some checks failed
Build and Push Docker / build-and-push (push) Has been cancelled
This commit is contained in:
@ -1,147 +1,140 @@
|
||||
from typing import Dict, Any, Tuple
|
||||
from typing import Dict, Any, Optional
|
||||
import base64
|
||||
import threading
|
||||
from haystack import Document, Pipeline
|
||||
from milvus_haystack import MilvusDocumentStore
|
||||
from haystack.components.embedders import OpenAIDocumentEmbedder
|
||||
from haystack.utils import Secret
|
||||
|
||||
from datetime import datetime
|
||||
import sys
|
||||
import os
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
|
||||
from config import (
|
||||
DEFAULT_USER_ID,
|
||||
OPENAI_EMBEDDING_KEY,
|
||||
OPENAI_EMBEDDING_MODEL,
|
||||
OPENAI_EMBEDDING_BASE,
|
||||
MEM0_CONFIG,
|
||||
)
|
||||
from haystack_rag.rag_pipeline import build_rag_pipeline
|
||||
from doubao_tts import text_to_speech
|
||||
from api.doubao_tts import text_to_speech
|
||||
from memory_module.memory_integration import Mem0Integration
|
||||
|
||||
|
||||
class ChatService:
|
||||
def __init__(self, user_id: str = None):
|
||||
self.user_id = user_id or DEFAULT_USER_ID
|
||||
self.rag_pipeline = None
|
||||
self.document_store = None
|
||||
self.document_embedder = None
|
||||
self.mem0_integration = Mem0Integration(MEM0_CONFIG)
|
||||
self._initialized = False
|
||||
|
||||
def initialize(self):
|
||||
"""初始化 RAG 管道和相关组件"""
|
||||
"""初始化 Mem0 集成"""
|
||||
if self._initialized:
|
||||
return
|
||||
|
||||
# 构建 RAG 查询管道和获取 DocumentStore 实例
|
||||
self.rag_pipeline, self.document_store = build_rag_pipeline(self.user_id)
|
||||
|
||||
# 初始化用于写入用户输入的 Document Embedder
|
||||
self.document_embedder = OpenAIDocumentEmbedder(
|
||||
api_key=Secret.from_token(OPENAI_EMBEDDING_KEY),
|
||||
model=OPENAI_EMBEDDING_MODEL,
|
||||
api_base_url=OPENAI_EMBEDDING_BASE,
|
||||
)
|
||||
|
||||
print(f"[INFO] Initializing Mem0 integration for user: {self.user_id}")
|
||||
self._initialized = True
|
||||
|
||||
def _embed_and_store_async(self, user_input: str):
|
||||
"""异步嵌入并存储用户输入"""
|
||||
try:
|
||||
# 步骤 1: 嵌入用户输入并写入 Milvus
|
||||
user_doc_to_write = Document(content=user_input, meta={"user_id": self.user_id})
|
||||
|
||||
# 使用 OpenAIDocumentEmbedder 运行嵌入
|
||||
embedding_result = self.document_embedder.run([user_doc_to_write])
|
||||
embedded_docs = embedding_result.get("documents", [])
|
||||
|
||||
if embedded_docs:
|
||||
# 将带有嵌入的文档写入 DocumentStore
|
||||
self.document_store.write_documents(embedded_docs)
|
||||
print(f"[INFO] 用户输入已成功嵌入并存储: {user_input[:50]}...")
|
||||
else:
|
||||
print(f"[WARNING] 用户输入嵌入失败: {user_input[:50]}...")
|
||||
|
||||
except Exception as e:
|
||||
print(f"[ERROR] 异步嵌入和存储过程出错: {e}")
|
||||
|
||||
def chat(self, user_input: str, include_audio: bool = True) -> Dict[str, Any]:
|
||||
"""处理用户输入并返回回复(包含音频)"""
|
||||
if not self._initialized:
|
||||
self.initialize()
|
||||
|
||||
try:
|
||||
# 步骤 1: 异步启动嵌入和存储过程(不阻塞主流程)
|
||||
embedding_thread = threading.Thread(
|
||||
target=self._embed_and_store_async,
|
||||
args=(user_input,),
|
||||
daemon=True
|
||||
# Step 1: Get response with memory integration
|
||||
result = self.mem0_integration.generate_response_with_memory(
|
||||
user_input=user_input,
|
||||
user_id=self.user_id
|
||||
)
|
||||
embedding_thread.start()
|
||||
|
||||
# 步骤 2: 立即使用 RAG 查询管道生成回复(不等待嵌入完成)
|
||||
pipeline_input = {
|
||||
"text_embedder": {"text": user_input},
|
||||
"prompt_builder": {"query": user_input},
|
||||
}
|
||||
|
||||
# 运行 RAG 查询管道
|
||||
results = self.rag_pipeline.run(pipeline_input)
|
||||
|
||||
# 步骤 3: 处理并返回结果
|
||||
if "llm" in results and results["llm"]["replies"]:
|
||||
answer = results["llm"]["replies"][0]
|
||||
|
||||
# 尝试获取 token 使用量
|
||||
total_tokens = None
|
||||
try:
|
||||
if (
|
||||
"meta" in results["llm"]
|
||||
and isinstance(results["llm"]["meta"], list)
|
||||
and results["llm"]["meta"]
|
||||
):
|
||||
usage_info = results["llm"]["meta"][0].get("usage", {})
|
||||
total_tokens = usage_info.get("total_tokens")
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
# 步骤 4: 生成语音(如果需要)
|
||||
audio_data = None
|
||||
audio_error = None
|
||||
if include_audio:
|
||||
try:
|
||||
success, message, base64_audio = text_to_speech(answer, self.user_id)
|
||||
if success and base64_audio:
|
||||
# 直接使用 base64 音频数据
|
||||
audio_data = base64_audio
|
||||
else:
|
||||
audio_error = message
|
||||
except Exception as e:
|
||||
audio_error = f"TTS错误: {str(e)}"
|
||||
|
||||
result = {
|
||||
"success": True,
|
||||
"response": answer,
|
||||
"user_id": self.user_id
|
||||
}
|
||||
|
||||
# 添加可选字段
|
||||
if total_tokens is not None:
|
||||
result["tokens"] = total_tokens
|
||||
if audio_data:
|
||||
result["audio_data"] = audio_data
|
||||
if audio_error:
|
||||
result["audio_error"] = audio_error
|
||||
|
||||
return result
|
||||
else:
|
||||
if not result["success"]:
|
||||
return {
|
||||
"success": False,
|
||||
"error": "Could not generate an answer",
|
||||
"debug_info": results,
|
||||
"error": result.get("error", "Unknown error"),
|
||||
"user_id": self.user_id
|
||||
}
|
||||
|
||||
|
||||
assistant_response = result["response"]
|
||||
|
||||
# Step 2: Generate audio if requested
|
||||
audio_data = None
|
||||
audio_error = None
|
||||
if include_audio:
|
||||
try:
|
||||
success, message, base64_audio = text_to_speech(assistant_response, self.user_id)
|
||||
if success and base64_audio:
|
||||
audio_data = base64_audio
|
||||
else:
|
||||
audio_error = message
|
||||
except Exception as e:
|
||||
audio_error = f"TTS错误: {str(e)}"
|
||||
|
||||
# Step 3: Prepare response
|
||||
response_data = {
|
||||
"success": True,
|
||||
"response": assistant_response,
|
||||
"user_id": self.user_id
|
||||
}
|
||||
|
||||
# Add optional fields
|
||||
if audio_data:
|
||||
response_data["audio_data"] = audio_data
|
||||
if audio_error:
|
||||
response_data["audio_error"] = audio_error
|
||||
|
||||
return response_data
|
||||
|
||||
except Exception as e:
|
||||
return {
|
||||
"success": False,
|
||||
"error": str(e),
|
||||
"user_id": self.user_id
|
||||
}
|
||||
|
||||
def get_user_memories(self) -> Dict[str, Any]:
|
||||
"""获取当前用户的所有记忆"""
|
||||
try:
|
||||
memories = self.mem0_integration.get_all_memories(self.user_id)
|
||||
return {
|
||||
"success": True,
|
||||
"memories": memories,
|
||||
"count": len(memories),
|
||||
"user_id": self.user_id
|
||||
}
|
||||
except Exception as e:
|
||||
return {
|
||||
"success": False,
|
||||
"error": str(e),
|
||||
"user_id": self.user_id
|
||||
}
|
||||
|
||||
def clear_user_memories(self) -> Dict[str, Any]:
|
||||
"""清除当前用户的所有记忆"""
|
||||
try:
|
||||
success = self.mem0_integration.delete_all_memories(self.user_id)
|
||||
if success:
|
||||
return {
|
||||
"success": True,
|
||||
"message": f"所有记忆已清除,用户: {self.user_id}",
|
||||
"user_id": self.user_id
|
||||
}
|
||||
else:
|
||||
return {
|
||||
"success": False,
|
||||
"error": "清除记忆失败",
|
||||
"user_id": self.user_id
|
||||
}
|
||||
except Exception as e:
|
||||
return {
|
||||
"success": False,
|
||||
"error": str(e),
|
||||
"user_id": self.user_id
|
||||
}
|
||||
|
||||
def search_memories(self, query: str, limit: int = 5) -> Dict[str, Any]:
|
||||
"""搜索当前用户的记忆"""
|
||||
try:
|
||||
memories = self.mem0_integration.search_memories(query, self.user_id, limit)
|
||||
return {
|
||||
"success": True,
|
||||
"memories": memories,
|
||||
"count": len(memories),
|
||||
"query": query,
|
||||
"user_id": self.user_id
|
||||
}
|
||||
except Exception as e:
|
||||
return {
|
||||
"success": False,
|
||||
|
@ -25,8 +25,8 @@ class ChatResponse(BaseModel):
|
||||
|
||||
# 创建 FastAPI 应用
|
||||
app = FastAPI(
|
||||
title="Haystack RAG API",
|
||||
description="基于 Haystack 的 RAG 聊天服务 API",
|
||||
title="Mem0 Memory API",
|
||||
description="基于 Mem0 的记忆增强聊天服务 API",
|
||||
version="1.0.0"
|
||||
)
|
||||
|
||||
@ -43,7 +43,7 @@ async def startup_event():
|
||||
@app.get("/")
|
||||
async def root():
|
||||
"""根路径,返回 API 信息"""
|
||||
return {"message": "Haystack RAG API is running", "version": "1.0.0"}
|
||||
return {"message": "Mem0 Memory API is running", "version": "1.0.0"}
|
||||
|
||||
|
||||
@app.get("/health")
|
||||
|
@ -52,17 +52,31 @@ MILVUS_INDEX_PARAMS = {"index_type": "FLAT", "metric_type": "L2", "params": {}}
|
||||
MILVUS_SEARCH_PARAMS = {"metric_type": "L2", "params": {}}
|
||||
MILVUS_STAND_URI = ""
|
||||
|
||||
# --- RAG Pipeline Configuration (保持不变) ---
|
||||
RETRIEVER_TOP_K = 3
|
||||
DEFAULT_PROMPT_TEMPLATE = """
|
||||
hello
|
||||
{% for doc in documents %}
|
||||
{{ doc.content }}
|
||||
{% endfor %}
|
||||
MEM0_CONFIG = {
|
||||
"vector_store": {
|
||||
"provider": "milvus",
|
||||
"config": {
|
||||
"embedding_model_dims": 2048,
|
||||
}
|
||||
},
|
||||
"llm": {
|
||||
"provider": "openai",
|
||||
"config": {
|
||||
"api_key": OPENAI_API_KEY_FROM_CONFIG,
|
||||
"model": "doubao-seed-1-6-250615",
|
||||
"openai_base_url": OPENAI_API_BASE_URL_CONFIG
|
||||
}
|
||||
},
|
||||
"embedder": {
|
||||
"provider": "openai",
|
||||
"config": {
|
||||
"api_key": OPENAI_EMBEDDING_KEY,
|
||||
"model": "doubao-embedding-large-text-250515",
|
||||
"openai_base_url": OPENAI_EMBEDDING_BASE
|
||||
}
|
||||
},
|
||||
}
|
||||
|
||||
问题: {{query}}
|
||||
答案:
|
||||
"""
|
||||
|
||||
# --- Application Settings (保持不变) ---
|
||||
DEFAULT_USER_ID = "user_openai"
|
||||
|
86
memory_module/README.md
Normal file
86
memory_module/README.md
Normal file
@ -0,0 +1,86 @@
|
||||
# Memory Module Integration
|
||||
|
||||
This module provides memory integration for the chat service using Mem0, allowing the system to remember user preferences and past conversations.
|
||||
|
||||
## Features
|
||||
|
||||
- **Persistent Memory**: Stores user interactions and preferences
|
||||
- **Contextual Responses**: Uses stored memories to provide personalized responses
|
||||
- **Memory Search**: Search through stored memories
|
||||
- **Memory Management**: View and clear user memories
|
||||
|
||||
## Usage
|
||||
|
||||
### Basic Chat with Memory
|
||||
|
||||
```python
|
||||
from api.chat_service import ChatService
|
||||
|
||||
# Initialize chat service
|
||||
chat_service = ChatService("user_id")
|
||||
chat_service.initialize()
|
||||
|
||||
# Send a message
|
||||
result = chat_service.chat("My name is Alice and I love sci-fi movies")
|
||||
print(result["response"])
|
||||
```
|
||||
|
||||
### Memory Operations
|
||||
|
||||
```python
|
||||
# Get all memories for a user
|
||||
memories = chat_service.get_user_memories()
|
||||
|
||||
# Search memories
|
||||
search_results = chat_service.search_memories("movies")
|
||||
|
||||
# Clear all memories
|
||||
chat_service.clear_user_memories()
|
||||
```
|
||||
|
||||
## Configuration
|
||||
|
||||
The Mem0 configuration is defined in `config/config.py`:
|
||||
|
||||
```python
|
||||
MEM0_CONFIG = {
|
||||
"vector_store": {
|
||||
"provider": "milvus",
|
||||
"config": {
|
||||
"embedding_model_dims": 2048,
|
||||
}
|
||||
},
|
||||
"llm": {
|
||||
"provider": "openai",
|
||||
"config": {
|
||||
"api_key": OPENAI_API_KEY_FROM_CONFIG,
|
||||
"model": "doubao-seed-1-6-250615",
|
||||
"openai_base_url": OPENAI_API_BASE_URL_CONFIG
|
||||
}
|
||||
},
|
||||
"embedder": {
|
||||
"provider": "openai",
|
||||
"config": {
|
||||
"api_key": OPENAI_EMBEDDING_KEY,
|
||||
"model": "doubao-embedding-large-text-250515",
|
||||
"openai_base_url": OPENAI_EMBEDDING_BASE
|
||||
}
|
||||
},
|
||||
}
|
||||
```
|
||||
|
||||
## How It Works
|
||||
|
||||
1. **Memory Retrieval**: When a user sends a message, the system searches for relevant memories about the user
|
||||
2. **Enhanced Prompt**: The retrieved memories are formatted and included in the prompt to the LLM
|
||||
3. **Response Generation**: The LLM generates a response considering the user's memories
|
||||
4. **Memory Storage**: The conversation is automatically stored as new memories
|
||||
|
||||
## API Endpoints
|
||||
|
||||
The main API endpoints remain the same:
|
||||
|
||||
- `POST /chat` - Send a message and get a response
|
||||
- `GET /health` - Health check
|
||||
|
||||
Additional memory management endpoints can be added to the main API if needed.
|
3
memory_module/__init__.py
Normal file
3
memory_module/__init__.py
Normal file
@ -0,0 +1,3 @@
|
||||
from .memory_integration import Mem0Integration
|
||||
|
||||
__all__ = ["Mem0Integration"]
|
158
memory_module/memory_integration.py
Normal file
158
memory_module/memory_integration.py
Normal file
@ -0,0 +1,158 @@
|
||||
import os
|
||||
from typing import List, Dict, Any, Optional
|
||||
from datetime import datetime
|
||||
import openai
|
||||
from mem0 import Memory
|
||||
|
||||
|
||||
class Mem0Integration:
|
||||
"""Mem0 integration for memory retrieval and storage in RAG pipeline."""
|
||||
|
||||
def __init__(self, config: Dict[str, Any]):
|
||||
"""Initialize Mem0 with configuration."""
|
||||
self.config = config
|
||||
self.memory = Memory.from_config(config)
|
||||
|
||||
# Initialize OpenAI client for chat completion
|
||||
self.openai_client = openai.OpenAI(
|
||||
api_key=config["llm"]["config"]["api_key"],
|
||||
base_url=config["llm"]["config"].get("openai_base_url")
|
||||
)
|
||||
self.llm_model = config["llm"]["config"]["model"]
|
||||
|
||||
# Memory prompt template
|
||||
self.memory_template = """Based on the following memories about the user:
|
||||
{memories}
|
||||
|
||||
Please respond to the user's query: {query}
|
||||
|
||||
In your response, consider the memories above to provide a personalized answer."""
|
||||
|
||||
def search_memories(self, query: str, user_id: str, limit: int = 5) -> List[Dict[str, Any]]:
|
||||
"""Search for relevant memories about the user."""
|
||||
try:
|
||||
results = self.memory.search(
|
||||
query=query,
|
||||
user_id=user_id,
|
||||
limit=limit
|
||||
)
|
||||
return results
|
||||
except Exception as e:
|
||||
print(f"[ERROR] Failed to search memories: {e}")
|
||||
return []
|
||||
|
||||
def add_memory(self, messages: List[Dict[str, str]], user_id: str, metadata: Optional[Dict] = None) -> Dict[str, Any]:
|
||||
"""Add a memory for the user."""
|
||||
try:
|
||||
result = self.memory.add(
|
||||
messages=messages,
|
||||
user_id=user_id,
|
||||
metadata=metadata or {}
|
||||
)
|
||||
return result
|
||||
except Exception as e:
|
||||
print(f"[ERROR] Failed to add memory: {e}")
|
||||
return {}
|
||||
|
||||
def format_memories_for_prompt(self, memories: List[Dict[str, Any]]) -> str:
|
||||
"""Format memories into a string for the prompt."""
|
||||
if not memories:
|
||||
return "No previous memories about this user."
|
||||
|
||||
formatted = []
|
||||
for i, memory in enumerate(memories, 1):
|
||||
memory_text = memory.get("memory", "")
|
||||
created_at = memory.get("created_at", "")
|
||||
if created_at:
|
||||
try:
|
||||
# Format the date if it's available
|
||||
created_date = datetime.fromisoformat(created_at.replace('Z', '+00:00'))
|
||||
created_str = created_date.strftime("%Y-%m-%d %H:%M")
|
||||
except:
|
||||
created_str = created_at
|
||||
formatted.append(f"{i}. {memory_text} (remembered on: {created_str})")
|
||||
else:
|
||||
formatted.append(f"{i}. {memory_text}")
|
||||
|
||||
return "\n".join(formatted)
|
||||
|
||||
def generate_response_with_memory(self, user_input: str, user_id: str) -> Dict[str, Any]:
|
||||
"""Generate a response using memories and store the interaction."""
|
||||
# Step 1: Search for relevant memories
|
||||
memories = self.search_memories(user_input, user_id)
|
||||
|
||||
# Step 2: Format memories for the prompt
|
||||
formatted_memories = self.format_memories_for_prompt(memories)
|
||||
|
||||
# Step 3: Create the enhanced prompt
|
||||
enhanced_prompt = self.memory_template.format(
|
||||
memories=formatted_memories,
|
||||
query=user_input
|
||||
)
|
||||
|
||||
# Step 4: Generate response using OpenAI
|
||||
try:
|
||||
response = self.openai_client.chat.completions.create(
|
||||
model=self.llm_model,
|
||||
messages=[
|
||||
{"role": "system", "content": "You are a helpful assistant with access to user memories. Use the provided memories to personalize your responses."},
|
||||
{"role": "user", "content": enhanced_prompt}
|
||||
],
|
||||
)
|
||||
|
||||
assistant_response = response.choices[0].message.content
|
||||
|
||||
# Step 5: Store the interaction as new memories
|
||||
messages = [
|
||||
{"role": "user", "content": user_input},
|
||||
{"role": "assistant", "content": assistant_response}
|
||||
]
|
||||
|
||||
# Store with metadata including timestamp
|
||||
metadata = {
|
||||
"timestamp": datetime.now().isoformat(),
|
||||
"type": "chat_interaction"
|
||||
}
|
||||
|
||||
self.add_memory(messages, user_id, metadata)
|
||||
|
||||
return {
|
||||
"success": True,
|
||||
"response": assistant_response,
|
||||
"user_id": user_id
|
||||
}
|
||||
|
||||
except Exception as e:
|
||||
print(f"[ERROR] Failed to generate response: {e}")
|
||||
return {
|
||||
"success": False,
|
||||
"error": str(e),
|
||||
"user_id": user_id
|
||||
}
|
||||
|
||||
def get_all_memories(self, user_id: str) -> List[Dict[str, Any]]:
|
||||
"""Get all memories for a user."""
|
||||
try:
|
||||
memories = self.memory.get_all(user_id=user_id)
|
||||
return memories
|
||||
except Exception as e:
|
||||
print(f"[ERROR] Failed to get all memories: {e}")
|
||||
return []
|
||||
|
||||
def delete_memory(self, memory_id: str) -> bool:
|
||||
"""Delete a specific memory."""
|
||||
try:
|
||||
self.memory.delete(memory_id)
|
||||
return True
|
||||
except Exception as e:
|
||||
print(f"[ERROR] Failed to delete memory: {e}")
|
||||
return False
|
||||
|
||||
def delete_all_memories(self, user_id: str) -> bool:
|
||||
"""Delete all memories for a user."""
|
||||
try:
|
||||
self.memory.delete_all(user_id=user_id)
|
||||
return True
|
||||
except Exception as e:
|
||||
print(f"[ERROR] Failed to delete all memories: {e}")
|
||||
return False
|
@ -8,6 +8,7 @@ dependencies = [
|
||||
"fastapi>=0.115.12",
|
||||
"haystack-ai>=2.12.1",
|
||||
"huggingface-hub>=0.30.2",
|
||||
"mem0ai>=0.1.118",
|
||||
"milvus-haystack>=0.0.15",
|
||||
"pydantic>=2.11.3",
|
||||
"pymilvus>=2.5.6",
|
||||
|
78
test_mem0_service.py
Normal file
78
test_mem0_service.py
Normal file
@ -0,0 +1,78 @@
|
||||
#!/usr/bin/env python3
|
||||
"""Test script for memory module-based chat service."""
|
||||
|
||||
import sys
|
||||
import os
|
||||
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
|
||||
|
||||
from api.chat_service import ChatService
|
||||
|
||||
|
||||
def test_chat_service():
|
||||
"""Test the memory module-based chat service."""
|
||||
print("=== Testing Memory Module-based Chat Service ===\n")
|
||||
|
||||
# Initialize chat service
|
||||
chat_service = ChatService("test_user")
|
||||
chat_service.initialize()
|
||||
|
||||
# Test conversations
|
||||
test_inputs = [
|
||||
"Hi, my name is Alice and I love science fiction movies.",
|
||||
"What kind of movies do I like?",
|
||||
"I also enjoy reading science fiction books.",
|
||||
"Tell me about my hobbies and interests.",
|
||||
"I went to Paris last summer and loved it!",
|
||||
"Where did I travel recently?"
|
||||
]
|
||||
|
||||
print("Starting conversation test...\n")
|
||||
|
||||
for i, user_input in enumerate(test_inputs, 1):
|
||||
print(f"--- Test {i} ---")
|
||||
print(f"User: {user_input}")
|
||||
|
||||
# Get response from chat service
|
||||
result = chat_service.chat(user_input, include_audio=False)
|
||||
|
||||
if result["success"]:
|
||||
print(f"Assistant: {result['response']}")
|
||||
print(f"Status: Success")
|
||||
else:
|
||||
print(f"Error: {result['error']}")
|
||||
print(f"Status: Failed")
|
||||
|
||||
print()
|
||||
|
||||
# Test memory retrieval
|
||||
print("\n--- Testing Memory Retrieval ---")
|
||||
memories_result = chat_service.get_user_memories()
|
||||
|
||||
if memories_result["success"]:
|
||||
print(f"Total memories stored: {memories_result['count']}")
|
||||
print("\nStored memories:")
|
||||
for i, memory in enumerate(memories_result["memories"], 1):
|
||||
print(f"{i}. {memory.get('memory', 'N/A')}")
|
||||
else:
|
||||
print(f"Failed to retrieve memories: {memories_result['error']}")
|
||||
|
||||
# Test memory search
|
||||
print("\n--- Testing Memory Search ---")
|
||||
search_queries = ["movies", "travel", "hobbies"]
|
||||
|
||||
for query in search_queries:
|
||||
print(f"\nSearching for '{query}':")
|
||||
search_result = chat_service.search_memories(query)
|
||||
|
||||
if search_result["success"]:
|
||||
print(f"Found {search_result['count']} memories:")
|
||||
for memory in search_result["memories"]:
|
||||
print(f"- {memory.get('memory', 'N/A')}")
|
||||
else:
|
||||
print(f"Search failed: {search_result['error']}")
|
||||
|
||||
print("\n=== Test completed ===")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_chat_service()
|
Reference in New Issue
Block a user