b29a18b4593113bec9a41b6edde706ef0007ebae
majiang-rl
A minimal Mahjong (Guobiao) simulation environment and reinforcement learning scaffold built on gymnasium.
Features
- 4-player Guobiao tile set (144 tiles, including flowers)
- Draw/discard turn loop with flower replacement
- Basic calls: win (ron/tsumo), pong, chi, kong
- Win checking for standard hands, seven pairs, and thirteen orphans
- Gymnasium-style environment API with action masks (type/discard/pong/kong/chi)
- Simple RL loop and random agent
Limitations
- No scoring or 8-fan enforcement
- NPC players use simple greedy claims and random discards
- No detailed round rules (winds/seat rotation, riichi, etc.)
Quick start (uv)
uv venv
uv pip install -e .
uv run python main.py
Environment API
from majiang_rl import MahjongEnv
env = MahjongEnv()
obs, info = env.reset()
# action format
# type: 0 discard, 1 declare win, 2 declare kong, 3 pass, 4 declare pong, 5 declare chi
# tile: tile id (0-41)
# chi: 0 left, 1 middle, 2 right
action = {"type": 0, "tile": 0, "chi": 0}
obs, reward, terminated, truncated, info = env.step(action)
RL scaffold
from majiang_rl import MahjongEnv
from majiang_rl.rl import RandomAgent, run_training
env = MahjongEnv()
agent = RandomAgent()
results = run_training(env, agent, episodes=10)
print(results[0])
GRPO self-play training
uv run python -m majiang_rl.rl.grpo --updates 20 --group-size 16 --device auto
uv run python -m majiang_rl.rl.grpo --updates 20 --group-size 16 --device auto --pong-reward 0.1 --closest-bonus 1.0
uv run python -m majiang_rl.rl.grpo --updates 20 --group-size 16 --device auto --swanlab --swanlab-project majiang-rl --swanlab-run-name grpo-demo
Reward uses a simplified fan breakdown (thirteen orphans, seven pairs, pure/half flush, all pungs, all honors).
Simple web UI
uv run python -m majiang_rl.ui.web --port 8000
Then open http://localhost:8000/index.html to watch the playback.
Description
Languages
Python
90.9%
HTML
9.1%