feat(model): introduce dynamic training flag for model forward pass

This commit is contained in:
gameloader
2025-09-13 00:04:01 +08:00
parent 172328a4e6
commit 93f14077da
4 changed files with 40 additions and 22 deletions

View File

@ -11,6 +11,7 @@ import warnings
import numpy as np
from utils.dtw_metric import dtw, accelerated_dtw
from utils.augmentation import run_augmentation, run_augmentation_single
import inspect
warnings.filterwarnings('ignore')
@ -18,9 +19,18 @@ warnings.filterwarnings('ignore')
class Exp_Long_Term_Forecast(Exp_Basic):
def __init__(self, args):
super(Exp_Long_Term_Forecast, self).__init__(args)
self._model_supports_training_flag = False
def _build_model(self):
model = self.model_dict[self.args.model].Model(self.args).float()
# 如果模型被 DataParallel 包装,我们需要检查原始模型
model_to_inspect = model
# inspect.signature() 可以获取函数或方法的参数信息
forward_signature = inspect.signature(model_to_inspect.forward)
# 检查'training'是否在参数列表中
if 'training' in forward_signature.parameters:
self._model_supports_training_flag = True
print("Model supports 'training' flag.")
if self.args.use_multi_gpu and self.args.use_gpu:
model = nn.DataParallel(model, device_ids=self.args.device_ids)
@ -63,12 +73,16 @@ class Exp_Long_Term_Forecast(Exp_Basic):
# decoder input
dec_inp = torch.zeros_like(batch_y[:, -self.args.pred_len:, :]).float()
dec_inp = torch.cat([batch_y[:, :self.args.label_len, :], dec_inp], dim=1).float().to(self.device)
# encoder - decoder
# --- 修改模型调用部分 ---
model_args = (batch_x, batch_x_mark, dec_inp, batch_y_mark)
model_kwargs = {}
if self._model_supports_training_flag:
model_kwargs['training'] = False # 验证阶段为 False
if self.args.use_amp:
with torch.cuda.amp.autocast():
outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark)
outputs = self.model(*model_args, **model_kwargs)
else:
outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark)
outputs = self.model(*model_args, **model_kwargs)
f_dim = -1 if self.args.features == 'MS' else 0
outputs = outputs[:, -self.args.pred_len:, f_dim:]
batch_y = batch_y[:, -self.args.pred_len:, f_dim:].to(self.device)
@ -130,19 +144,20 @@ class Exp_Long_Term_Forecast(Exp_Basic):
dec_inp = torch.zeros_like(batch_y[:, -self.args.pred_len:, :]).float()
dec_inp = torch.cat([batch_y[:, :self.args.label_len, :], dec_inp], dim=1).float().to(self.device)
# encoder - decoder
model_args = (batch_x, batch_x_mark, dec_inp, batch_y_mark)
model_kwargs = {}
if self._model_supports_training_flag:
model_kwargs['training'] = True # 训练阶段为 True
if self.args.use_amp:
with torch.cuda.amp.autocast():
outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark)
outputs = self.model(*model_args, **model_kwargs)
f_dim = -1 if self.args.features == 'MS' else 0
outputs = outputs[:, -self.args.pred_len:, f_dim:]
batch_y = batch_y[:, -self.args.pred_len:, f_dim:].to(self.device)
loss = criterion(outputs, batch_y)
train_loss.append(loss.item())
else:
outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark)
outputs = self.model(*model_args, **model_kwargs)
f_dim = -1 if self.args.features == 'MS' else 0
outputs = outputs[:, -self.args.pred_len:, f_dim:]
batch_y = batch_y[:, -self.args.pred_len:, f_dim:].to(self.device)
@ -208,12 +223,15 @@ class Exp_Long_Term_Forecast(Exp_Basic):
# decoder input
dec_inp = torch.zeros_like(batch_y[:, -self.args.pred_len:, :]).float()
dec_inp = torch.cat([batch_y[:, :self.args.label_len, :], dec_inp], dim=1).float().to(self.device)
# encoder - decoder
model_args = (batch_x, batch_x_mark, dec_inp, batch_y_mark)
model_kwargs = {}
if self._model_supports_training_flag:
model_kwargs['training'] = False # 测试阶段为 False
if self.args.use_amp:
with torch.cuda.amp.autocast():
outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark)
outputs = self.model(*model_args, **model_kwargs)
else:
outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark)
outputs = self.model(*model_args, **model_kwargs)
f_dim = -1 if self.args.features == 'MS' else 0
outputs = outputs[:, -self.args.pred_len:, :]