306 lines
13 KiB
Python
306 lines
13 KiB
Python
from data_provider.data_factory import data_provider
|
|
from exp.exp_basic import Exp_Basic
|
|
from utils.tools import EarlyStopping, adjust_learning_rate, visual
|
|
from utils.metrics import metric
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch import optim
|
|
import os
|
|
import time
|
|
import warnings
|
|
import numpy as np
|
|
from utils.dtw_metric import dtw, accelerated_dtw
|
|
from utils.augmentation import run_augmentation, run_augmentation_single
|
|
import inspect
|
|
|
|
warnings.filterwarnings('ignore')
|
|
|
|
|
|
class Exp_Long_Term_Forecast(Exp_Basic):
|
|
def __init__(self, args):
|
|
super(Exp_Long_Term_Forecast, self).__init__(args)
|
|
self._model_supports_training_flag = False
|
|
|
|
def _build_model(self):
|
|
model = self.model_dict[self.args.model].Model(self.args).float()
|
|
# 如果模型被 DataParallel 包装,我们需要检查原始模型
|
|
model_to_inspect = model
|
|
# inspect.signature() 可以获取函数或方法的参数信息
|
|
forward_signature = inspect.signature(model_to_inspect.forward)
|
|
# 检查'training'是否在参数列表中
|
|
if 'training' in forward_signature.parameters:
|
|
self._model_supports_training_flag = True
|
|
print("Model supports 'training' flag.")
|
|
|
|
if self.args.use_multi_gpu and self.args.use_gpu:
|
|
model = nn.DataParallel(model, device_ids=self.args.device_ids)
|
|
return model
|
|
|
|
def _get_data(self, flag):
|
|
data_set, data_loader = data_provider(self.args, flag)
|
|
return data_set, data_loader
|
|
|
|
def _select_optimizer(self):
|
|
model_optim = optim.Adam(self.model.parameters(), lr=self.args.learning_rate)
|
|
return model_optim
|
|
|
|
def _select_criterion(self, loss_name='MSE'):
|
|
if self.args.data == 'PEMS':
|
|
return nn.L1Loss()
|
|
elif loss_name == 'MSE':
|
|
return nn.MSELoss()
|
|
elif loss_name == 'MAPE':
|
|
return mape_loss()
|
|
elif loss_name == 'MASE':
|
|
return mase_loss()
|
|
elif loss_name == 'SMAPE':
|
|
return smape_loss()
|
|
elif loss_name == 'MAE':
|
|
return nn.L1Loss(reduction='mean')
|
|
|
|
|
|
def vali(self, vali_data, vali_loader, criterion):
|
|
total_loss = []
|
|
self.model.eval()
|
|
with torch.no_grad():
|
|
for i, (batch_x, batch_y, batch_x_mark, batch_y_mark) in enumerate(vali_loader):
|
|
batch_x = batch_x.float().to(self.device)
|
|
batch_y = batch_y.float()
|
|
|
|
batch_x_mark = batch_x_mark.float().to(self.device)
|
|
batch_y_mark = batch_y_mark.float().to(self.device)
|
|
|
|
# decoder input
|
|
dec_inp = torch.zeros_like(batch_y[:, -self.args.pred_len:, :]).float()
|
|
dec_inp = torch.cat([batch_y[:, :self.args.label_len, :], dec_inp], dim=1).float().to(self.device)
|
|
# --- 修改模型调用部分 ---
|
|
model_args = (batch_x, batch_x_mark, dec_inp, batch_y_mark)
|
|
model_kwargs = {}
|
|
if self._model_supports_training_flag:
|
|
model_kwargs['training'] = False # 验证阶段为 False
|
|
if self.args.use_amp:
|
|
with torch.cuda.amp.autocast():
|
|
outputs = self.model(*model_args, **model_kwargs)
|
|
else:
|
|
outputs = self.model(*model_args, **model_kwargs)
|
|
f_dim = -1 if self.args.features == 'MS' else 0
|
|
outputs = outputs[:, -self.args.pred_len:, f_dim:]
|
|
batch_y = batch_y[:, -self.args.pred_len:, f_dim:].to(self.device)
|
|
|
|
pred = outputs.detach()
|
|
true = batch_y.detach()
|
|
|
|
if self.args.data == 'PEMS':
|
|
B, T, C = pred.shape
|
|
pred = pred.cpu().numpy()
|
|
true = true.cpu().numpy()
|
|
pred = vali_data.inverse_transform(pred.reshape(-1, C)).reshape(B, T, C)
|
|
true = vali_data.inverse_transform(true.reshape(-1, C)).reshape(B, T, C)
|
|
mae, mse, rmse, mape, mspe = metric(pred, true)
|
|
total_loss.append(mae)
|
|
else:
|
|
loss = criterion(pred, true)
|
|
total_loss.append(loss.item())
|
|
|
|
total_loss = np.average(total_loss)
|
|
self.model.train()
|
|
return total_loss
|
|
|
|
def train(self, setting):
|
|
train_data, train_loader = self._get_data(flag='train')
|
|
vali_data, vali_loader = self._get_data(flag='val')
|
|
test_data, test_loader = self._get_data(flag='test')
|
|
|
|
path = os.path.join(self.args.checkpoints, setting)
|
|
if not os.path.exists(path):
|
|
os.makedirs(path)
|
|
|
|
time_now = time.time()
|
|
|
|
train_steps = len(train_loader)
|
|
early_stopping = EarlyStopping(patience=self.args.patience, verbose=True)
|
|
|
|
model_optim = self._select_optimizer()
|
|
criterion = self._select_criterion()
|
|
|
|
if self.args.use_amp:
|
|
scaler = torch.cuda.amp.GradScaler()
|
|
|
|
for epoch in range(self.args.train_epochs):
|
|
iter_count = 0
|
|
train_loss = []
|
|
|
|
self.model.train()
|
|
epoch_time = time.time()
|
|
for i, (batch_x, batch_y, batch_x_mark, batch_y_mark) in enumerate(train_loader):
|
|
iter_count += 1
|
|
model_optim.zero_grad()
|
|
batch_x = batch_x.float().to(self.device)
|
|
batch_y = batch_y.float().to(self.device)
|
|
batch_x_mark = batch_x_mark.float().to(self.device)
|
|
batch_y_mark = batch_y_mark.float().to(self.device)
|
|
|
|
# decoder input
|
|
dec_inp = torch.zeros_like(batch_y[:, -self.args.pred_len:, :]).float()
|
|
dec_inp = torch.cat([batch_y[:, :self.args.label_len, :], dec_inp], dim=1).float().to(self.device)
|
|
|
|
model_args = (batch_x, batch_x_mark, dec_inp, batch_y_mark)
|
|
model_kwargs = {}
|
|
if self._model_supports_training_flag:
|
|
model_kwargs['training'] = True # 训练阶段为 True
|
|
if self.args.use_amp:
|
|
with torch.cuda.amp.autocast():
|
|
outputs = self.model(*model_args, **model_kwargs)
|
|
f_dim = -1 if self.args.features == 'MS' else 0
|
|
outputs = outputs[:, -self.args.pred_len:, f_dim:]
|
|
batch_y = batch_y[:, -self.args.pred_len:, f_dim:].to(self.device)
|
|
loss = criterion(outputs, batch_y)
|
|
train_loss.append(loss.item())
|
|
else:
|
|
outputs = self.model(*model_args, **model_kwargs)
|
|
f_dim = -1 if self.args.features == 'MS' else 0
|
|
outputs = outputs[:, -self.args.pred_len:, f_dim:]
|
|
batch_y = batch_y[:, -self.args.pred_len:, f_dim:].to(self.device)
|
|
loss = criterion(outputs, batch_y)
|
|
train_loss.append(loss.item())
|
|
|
|
if (i + 1) % 100 == 0:
|
|
print("\titers: {0}, epoch: {1} | loss: {2:.7f}".format(i + 1, epoch + 1, loss.item()))
|
|
speed = (time.time() - time_now) / iter_count
|
|
left_time = speed * ((self.args.train_epochs - epoch) * train_steps - i)
|
|
print('\tspeed: {:.4f}s/iter; left time: {:.4f}s'.format(speed, left_time))
|
|
iter_count = 0
|
|
time_now = time.time()
|
|
|
|
if self.args.use_amp:
|
|
scaler.scale(loss).backward()
|
|
scaler.step(model_optim)
|
|
scaler.update()
|
|
else:
|
|
loss.backward()
|
|
model_optim.step()
|
|
|
|
print("Epoch: {} cost time: {}".format(epoch + 1, time.time() - epoch_time))
|
|
train_loss = np.average(train_loss)
|
|
vali_loss = self.vali(vali_data, vali_loader, criterion)
|
|
test_loss = self.vali(test_data, test_loader, criterion)
|
|
|
|
print("Epoch: {0}, Steps: {1} | Train Loss: {2:.7f} Vali Loss: {3:.7f} Test Loss: {4:.7f}".format(
|
|
epoch + 1, train_steps, train_loss, vali_loss, test_loss))
|
|
early_stopping(vali_loss, self.model, path)
|
|
if early_stopping.early_stop:
|
|
print("Early stopping")
|
|
break
|
|
|
|
adjust_learning_rate(model_optim, epoch + 1, self.args)
|
|
|
|
best_model_path = path + '/' + 'checkpoint.pth'
|
|
self.model.load_state_dict(torch.load(best_model_path))
|
|
|
|
return self.model
|
|
|
|
def test(self, setting, test=0):
|
|
test_data, test_loader = self._get_data(flag='test')
|
|
if test:
|
|
print('loading model')
|
|
self.model.load_state_dict(torch.load(os.path.join('./checkpoints/' + setting, 'checkpoint.pth')))
|
|
|
|
preds = []
|
|
trues = []
|
|
folder_path = './test_results/' + setting + '/'
|
|
if not os.path.exists(folder_path):
|
|
os.makedirs(folder_path)
|
|
|
|
self.model.eval()
|
|
with torch.no_grad():
|
|
for i, (batch_x, batch_y, batch_x_mark, batch_y_mark) in enumerate(test_loader):
|
|
batch_x = batch_x.float().to(self.device)
|
|
batch_y = batch_y.float().to(self.device)
|
|
|
|
batch_x_mark = batch_x_mark.float().to(self.device)
|
|
batch_y_mark = batch_y_mark.float().to(self.device)
|
|
|
|
# decoder input
|
|
dec_inp = torch.zeros_like(batch_y[:, -self.args.pred_len:, :]).float()
|
|
dec_inp = torch.cat([batch_y[:, :self.args.label_len, :], dec_inp], dim=1).float().to(self.device)
|
|
model_args = (batch_x, batch_x_mark, dec_inp, batch_y_mark)
|
|
model_kwargs = {}
|
|
if self._model_supports_training_flag:
|
|
model_kwargs['training'] = False # 测试阶段为 False
|
|
if self.args.use_amp:
|
|
with torch.cuda.amp.autocast():
|
|
outputs = self.model(*model_args, **model_kwargs)
|
|
else:
|
|
outputs = self.model(*model_args, **model_kwargs)
|
|
|
|
f_dim = -1 if self.args.features == 'MS' else 0
|
|
outputs = outputs[:, -self.args.pred_len:, :]
|
|
batch_y = batch_y[:, -self.args.pred_len:, :].to(self.device)
|
|
outputs = outputs.detach().cpu().numpy()
|
|
batch_y = batch_y.detach().cpu().numpy()
|
|
if test_data.scale and self.args.inverse:
|
|
shape = batch_y.shape
|
|
if outputs.shape[-1] != batch_y.shape[-1]:
|
|
outputs = np.tile(outputs, [1, 1, int(batch_y.shape[-1] / outputs.shape[-1])])
|
|
outputs = test_data.inverse_transform(outputs.reshape(shape[0] * shape[1], -1)).reshape(shape)
|
|
batch_y = test_data.inverse_transform(batch_y.reshape(shape[0] * shape[1], -1)).reshape(shape)
|
|
|
|
outputs = outputs[:, :, f_dim:]
|
|
batch_y = batch_y[:, :, f_dim:]
|
|
|
|
pred = outputs
|
|
true = batch_y
|
|
|
|
preds.append(pred)
|
|
trues.append(true)
|
|
if i % 20 == 0:
|
|
input = batch_x.detach().cpu().numpy()
|
|
if test_data.scale and self.args.inverse:
|
|
shape = input.shape
|
|
input = test_data.inverse_transform(input.reshape(shape[0] * shape[1], -1)).reshape(shape)
|
|
gt = np.concatenate((input[0, :, -1], true[0, :, -1]), axis=0)
|
|
pd = np.concatenate((input[0, :, -1], pred[0, :, -1]), axis=0)
|
|
visual(gt, pd, os.path.join(folder_path, str(i) + '.pdf'))
|
|
|
|
preds = np.concatenate(preds, axis=0)
|
|
trues = np.concatenate(trues, axis=0)
|
|
print('test shape:', preds.shape, trues.shape)
|
|
preds = preds.reshape(-1, preds.shape[-2], preds.shape[-1])
|
|
trues = trues.reshape(-1, trues.shape[-2], trues.shape[-1])
|
|
print('test shape:', preds.shape, trues.shape)
|
|
|
|
# result save
|
|
folder_path = './results/' + setting + '/'
|
|
if not os.path.exists(folder_path):
|
|
os.makedirs(folder_path)
|
|
|
|
# dtw calculation
|
|
if self.args.use_dtw:
|
|
dtw_list = []
|
|
manhattan_distance = lambda x, y: np.abs(x - y)
|
|
for i in range(preds.shape[0]):
|
|
x = preds[i].reshape(-1, 1)
|
|
y = trues[i].reshape(-1, 1)
|
|
if i % 100 == 0:
|
|
print("calculating dtw iter:", i)
|
|
d, _, _, _ = accelerated_dtw(x, y, dist=manhattan_distance)
|
|
dtw_list.append(d)
|
|
dtw = np.array(dtw_list).mean()
|
|
else:
|
|
dtw = 'Not calculated'
|
|
|
|
mae, mse, rmse, mape, mspe = metric(preds, trues)
|
|
print('mse:{}, mae:{}, dtw:{}'.format(mse, mae, dtw))
|
|
f = open("result_long_term_forecast.txt", 'a')
|
|
f.write(setting + " \n")
|
|
f.write('mse:{}, mae:{}, dtw:{}'.format(mse, mae, dtw))
|
|
f.write('\n')
|
|
f.write('\n')
|
|
f.close()
|
|
|
|
np.save(folder_path + 'metrics.npy', np.array([mae, mse, rmse, mape, mspe]))
|
|
np.save(folder_path + 'pred.npy', preds)
|
|
np.save(folder_path + 'true.npy', trues)
|
|
|
|
return
|