b9d6dff9877c722c4c3b0948fbbd2fc9e655dfd6
DDT: Decoupled Diffusion Transformer
Introduction
We decouple diffusion transformer into encoder-decoder design, and surpresingly that a more substantial encoder yields performance improvements as model size increases.

- We achieves 1.26 FID on ImageNet256x256 Benchmark with DDT-XL/2(22en6de).
- We achieves 1.28 FID on ImageNet512x512 Benchmark with DDT-XL/2(22en6de).
- As a byproduct, our DDT can reuse encoder among adjacent steps to accelerate inference.
Visualizations
Checkpoints
We take the off-shelf VAE to encode image into latent space, and train the decoder with DDT.
| Dataset | Model | Params | FID | HuggingFace |
|---|---|---|---|---|
| ImageNet256 | DDT-XL/2(22en6de) | 675M | 1.26 | 🤗 |
| ImageNet512 | DDT-XL/2(22en6de) | 675M | 1.28 | 🤗 |
Online Demos
We provide online demos for DDT-XL/2(22en6de) on HuggingFace Spaces.
HF spases: https://huggingface.co/spaces/MCG-NJU/DDT
Usages
We use ADM evaluation suite to report FID.
# for installation
pip install -r requirements.txt
# for inference
python main.py predict -c configs/repa_improved_ddt_xlen22de6_256.yaml --ckpt_path=XXX.ckpt
# for training
# extract image latent (optional)
python3 tools/cache_imlatent4.py
# train
python main.py fit -c configs/repa_improved_ddt_xlen22de6_256.yaml
Reference
@article{wang2025ddt,
title={DDT: Decoupled Diffusion Transformer},
author={Wang, Shuai and Tian, Zhi and Huang, Weilin and Wang, Limin},
journal={arXiv preprint arXiv:2504.05741},
year={2025}
}
Acknowledgement
The code is mainly built upon FlowDCN, we also borrow ideas from the REPA, MAR and SiT.
Description
Languages
Python
99.8%
Shell
0.2%
