2025-04-11 20:59:07 +08:00
2025-04-09 11:26:23 +08:00
2025-04-09 11:26:23 +08:00
2025-04-11 19:14:51 +08:00
2025-04-09 11:01:16 +08:00
2025-04-11 19:40:27 +08:00
2025-04-11 19:10:11 +08:00
2025-04-09 11:01:16 +08:00
2025-04-09 11:01:16 +08:00
2025-04-11 20:59:07 +08:00
2025-04-11 13:24:51 +08:00

DDT: Decoupled Diffusion Transformer

arXiv arXiv
PWC

PWC

Introduction

We decouple diffusion transformer into encoder-decoder design, and surpresingly that a more substantial encoder yields performance improvements as model size increases.

  • We achieves 1.26 FID on ImageNet256x256 Benchmark with DDT-XL/2(22en6de).
  • We achieves 1.28 FID on ImageNet512x512 Benchmark with DDT-XL/2(22en6de).
  • As a byproduct, our DDT can reuse encoder among adjacent steps to accelerate inference.

Visualizations

Checkpoints

We take the off-shelf VAE to encode image into latent space, and train the decoder with DDT.

Dataset Model Params FID HuggingFace
ImageNet256 DDT-XL/2(22en6de) 675M 1.26 🤗
ImageNet512 DDT-XL/2(22en6de) 675M 1.28 🤗

Online Demos

We provide online demos for DDT-XL/2(22en6de) on HuggingFace Spaces.

HF spases: https://huggingface.co/spaces/MCG-NJU/DDT

Usages

We use ADM evaluation suite to report FID.

# for installation
pip install -r requirements.txt
# for inference
python main.py predict -c configs/repa_improved_ddt_xlen22de6_256.yaml --ckpt_path=XXX.ckpt
# for training
# extract image latent (optional)
python3 tools/cache_imlatent4.py
# train
python main.py fit -c configs/repa_improved_ddt_xlen22de6_256.yaml

Reference

@article{wang2025ddt,
  title={DDT: Decoupled Diffusion Transformer},
  author={Wang, Shuai and Tian, Zhi and Huang, Weilin and Wang, Limin},
  journal={arXiv preprint arXiv:2504.05741},
  year={2025}
}

Acknowledgement

The code is mainly built upon FlowDCN, we also borrow ideas from the REPA, MAR and SiT.

Description
No description provided
Readme 17 MiB
Languages
Python 99.8%
Shell 0.2%