61 lines
2.9 KiB
Markdown
61 lines
2.9 KiB
Markdown
# DDT: Decoupled Diffusion Transformer
|
|
<div style="text-align: center;">
|
|
<a href="https://arxiv.org/abs/2504.05741"><img src="https://img.shields.io/badge/arXiv-2504.05741-b31b1b.svg" alt="arXiv"></a>
|
|
<a href="https://huggingface.co/spaces/MCG-NJU/DDT"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Online_Demo-green" alt="arXiv"></a>
|
|
</div>
|
|
|
|
<div style="text-align: center;">
|
|
<a href="https://paperswithcode.com/sota/image-generation-on-imagenet-256x256?p=ddt-decoupled-diffusion-transformer"><img src="https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/ddt-decoupled-diffusion-transformer/image-generation-on-imagenet-256x256" alt="PWC"></a>
|
|
|
|
<a href="https://paperswithcode.com/sota/image-generation-on-imagenet-512x512?p=ddt-decoupled-diffusion-transformer"><img src="https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/ddt-decoupled-diffusion-transformer/image-generation-on-imagenet-512x512" alt="PWC"></a>
|
|
</div>
|
|
|
|
## Introduction
|
|
We decouple diffusion transformer into encoder-decoder design, and surpresingly that a **more substantial encoder yields performance improvements as model size increases**.
|
|

|
|
* We achieves **1.26 FID** on ImageNet256x256 Benchmark with DDT-XL/2(22en6de).
|
|
* We achieves **1.28 FID** on ImageNet512x512 Benchmark with DDT-XL/2(22en6de).
|
|
* As a byproduct, our DDT can reuse encoder among adjacent steps to accelerate inference.
|
|
## Visualizations
|
|

|
|
## Checkpoints
|
|
We take the off-shelf [VAE](https://huggingface.co/stabilityai/sd-vae-ft-ema) to encode image into latent space, and train the decoder with DDT.
|
|
|
|
| Dataset | Model | Params | FID | HuggingFace |
|
|
|-------------|-------------------|-----------|------|----------------------------------------------------------|
|
|
| ImageNet256 | DDT-XL/2(22en6de) | 675M | 1.26 | [🤗](https://huggingface.co/MCG-NJU/DDT-XL-22en6de-R256) |
|
|
| ImageNet512 | DDT-XL/2(22en6de) | 675M | 1.28 | [🤗](https://huggingface.co/MCG-NJU/DDT-XL-22en6de-R512) |
|
|
## Online Demos
|
|
We provide online demos for DDT-XL/2(22en6de) on HuggingFace Spaces.
|
|
|
|
HF spases: [https://huggingface.co/spaces/MCG-NJU/DDT](https://huggingface.co/spaces/MCG-NJU/DDT)
|
|
|
|
## Usages
|
|
We use ADM evaluation suite to report FID.
|
|
```bash
|
|
# for installation
|
|
pip install -r requirements.txt
|
|
```
|
|
```bash
|
|
# for inference
|
|
python main.py predict -c configs/repa_improved_ddt_xlen22de6_256.yaml --ckpt_path=XXX.ckpt
|
|
```
|
|
|
|
```bash
|
|
# for training
|
|
# extract image latent (optional)
|
|
python3 tools/cache_imlatent4.py
|
|
# train
|
|
python main.py fit -c configs/repa_improved_ddt_xlen22de6_256.yaml
|
|
```
|
|
|
|
|
|
## Reference
|
|
```bibtex
|
|
@article{wang2025ddt,
|
|
title={DDT: Decoupled Diffusion Transformer},
|
|
author={Wang, Shuai and Tian, Zhi and Huang, Weilin and Wang, Limin},
|
|
journal={arXiv preprint arXiv:2504.05741},
|
|
year={2025}
|
|
}
|
|
``` |