217 lines
8.5 KiB
Python
217 lines
8.5 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import torch.fft
|
|
from layers.Embed import DataEmbedding
|
|
from layers.Conv_Blocks import Inception_Block_V1
|
|
|
|
|
|
def FFT_for_Period(x, k=2):
|
|
# [B, T, C]
|
|
xf = torch.fft.rfft(x, dim=1)
|
|
# find period by amplitudes
|
|
frequency_list = abs(xf).mean(0).mean(-1)
|
|
frequency_list[0] = 0
|
|
_, top_list = torch.topk(frequency_list, k)
|
|
top_list = top_list.detach().cpu().numpy()
|
|
period = x.shape[1] // top_list
|
|
return period, abs(xf).mean(-1)[:, top_list]
|
|
|
|
|
|
class TimesBlock(nn.Module):
|
|
def __init__(self, configs):
|
|
super(TimesBlock, self).__init__()
|
|
self.seq_len = configs.seq_len
|
|
self.pred_len = configs.pred_len
|
|
self.k = configs.top_k
|
|
# parameter-efficient design
|
|
self.conv = nn.Sequential(
|
|
Inception_Block_V1(configs.d_model, configs.d_ff,
|
|
num_kernels=configs.num_kernels),
|
|
nn.GELU(),
|
|
Inception_Block_V1(configs.d_ff, configs.d_model,
|
|
num_kernels=configs.num_kernels)
|
|
)
|
|
|
|
def forward(self, x):
|
|
B, T, N = x.size()
|
|
period_list, period_weight = FFT_for_Period(x, self.k)
|
|
|
|
res = []
|
|
for i in range(self.k):
|
|
period = period_list[i]
|
|
# padding
|
|
if (self.seq_len + self.pred_len) % period != 0:
|
|
length = (
|
|
((self.seq_len + self.pred_len) // period) + 1) * period
|
|
padding = torch.zeros([x.shape[0], (length - (self.seq_len + self.pred_len)), x.shape[2]]).to(x.device)
|
|
out = torch.cat([x, padding], dim=1)
|
|
else:
|
|
length = (self.seq_len + self.pred_len)
|
|
out = x
|
|
# reshape
|
|
out = out.reshape(B, length // period, period,
|
|
N).permute(0, 3, 1, 2).contiguous()
|
|
# 2D conv: from 1d Variation to 2d Variation
|
|
out = self.conv(out)
|
|
# reshape back
|
|
out = out.permute(0, 2, 3, 1).reshape(B, -1, N)
|
|
res.append(out[:, :(self.seq_len + self.pred_len), :])
|
|
res = torch.stack(res, dim=-1)
|
|
# adaptive aggregation
|
|
period_weight = F.softmax(period_weight, dim=1)
|
|
period_weight = period_weight.unsqueeze(
|
|
1).unsqueeze(1).repeat(1, T, N, 1)
|
|
res = torch.sum(res * period_weight, -1)
|
|
# residual connection
|
|
res = res + x
|
|
return res
|
|
|
|
|
|
class Model(nn.Module):
|
|
"""
|
|
Paper link: https://openreview.net/pdf?id=ju_Uqw384Oq
|
|
"""
|
|
|
|
def __init__(self, configs):
|
|
super(Model, self).__init__()
|
|
self.configs = configs
|
|
self.task_name = configs.task_name
|
|
self.seq_len = configs.seq_len
|
|
self.label_len = configs.label_len
|
|
self.pred_len = configs.pred_len
|
|
self.model = nn.ModuleList([TimesBlock(configs)
|
|
for _ in range(configs.e_layers)])
|
|
self.enc_embedding = DataEmbedding(configs.enc_in, configs.d_model, configs.embed, configs.freq,
|
|
configs.dropout)
|
|
self.layer = configs.e_layers
|
|
self.layer_norm = nn.LayerNorm(configs.d_model)
|
|
if self.task_name == 'long_term_forecast' or self.task_name == 'short_term_forecast':
|
|
self.predict_linear = nn.Linear(
|
|
self.seq_len, self.pred_len + self.seq_len)
|
|
self.projection = nn.Linear(
|
|
configs.d_model, configs.c_out, bias=True)
|
|
if self.task_name == 'imputation' or self.task_name == 'anomaly_detection':
|
|
self.projection = nn.Linear(
|
|
configs.d_model, configs.c_out, bias=True)
|
|
if self.task_name == 'classification':
|
|
self.act = F.gelu
|
|
self.dropout = nn.Dropout(configs.dropout)
|
|
self.projection = nn.Linear(
|
|
configs.d_model * configs.seq_len, configs.num_class)
|
|
|
|
def forecast(self, x_enc, x_mark_enc, x_dec, x_mark_dec):
|
|
# Normalization from Non-stationary Transformer
|
|
means = x_enc.mean(1, keepdim=True).detach()
|
|
x_enc = x_enc.sub(means)
|
|
stdev = torch.sqrt(
|
|
torch.var(x_enc, dim=1, keepdim=True, unbiased=False) + 1e-5)
|
|
x_enc = x_enc.div(stdev)
|
|
|
|
# embedding
|
|
enc_out = self.enc_embedding(x_enc, x_mark_enc) # [B,T,C]
|
|
enc_out = self.predict_linear(enc_out.permute(0, 2, 1)).permute(
|
|
0, 2, 1) # align temporal dimension
|
|
|
|
# TimesNet
|
|
for i in range(self.layer):
|
|
enc_out = self.layer_norm(self.model[i](enc_out))
|
|
# project back
|
|
dec_out = self.projection(enc_out)
|
|
|
|
# De-Normalization from Non-stationary Transformer
|
|
dec_out = dec_out.mul(
|
|
(stdev[:, 0, :].unsqueeze(1).repeat(
|
|
1, self.pred_len + self.seq_len, 1)))
|
|
dec_out = dec_out.add(
|
|
(means[:, 0, :].unsqueeze(1).repeat(
|
|
1, self.pred_len + self.seq_len, 1)))
|
|
return dec_out
|
|
|
|
def imputation(self, x_enc, x_mark_enc, x_dec, x_mark_dec, mask):
|
|
# Normalization from Non-stationary Transformer
|
|
means = torch.sum(x_enc, dim=1) / torch.sum(mask == 1, dim=1)
|
|
means = means.unsqueeze(1).detach()
|
|
x_enc = x_enc.sub(means)
|
|
x_enc = x_enc.masked_fill(mask == 0, 0)
|
|
stdev = torch.sqrt(torch.sum(x_enc * x_enc, dim=1) /
|
|
torch.sum(mask == 1, dim=1) + 1e-5)
|
|
stdev = stdev.unsqueeze(1).detach()
|
|
x_enc = x_enc.div(stdev)
|
|
|
|
# embedding
|
|
enc_out = self.enc_embedding(x_enc, x_mark_enc) # [B,T,C]
|
|
# TimesNet
|
|
for i in range(self.layer):
|
|
enc_out = self.layer_norm(self.model[i](enc_out))
|
|
# project back
|
|
dec_out = self.projection(enc_out)
|
|
|
|
# De-Normalization from Non-stationary Transformer
|
|
dec_out = dec_out.mul(
|
|
(stdev[:, 0, :].unsqueeze(1).repeat(
|
|
1, self.pred_len + self.seq_len, 1)))
|
|
dec_out = dec_out.add(
|
|
(means[:, 0, :].unsqueeze(1).repeat(
|
|
1, self.pred_len + self.seq_len, 1)))
|
|
return dec_out
|
|
|
|
def anomaly_detection(self, x_enc):
|
|
# Normalization from Non-stationary Transformer
|
|
means = x_enc.mean(1, keepdim=True).detach()
|
|
x_enc = x_enc.sub(means)
|
|
stdev = torch.sqrt(
|
|
torch.var(x_enc, dim=1, keepdim=True, unbiased=False) + 1e-5)
|
|
x_enc = x_enc.div(stdev)
|
|
|
|
# embedding
|
|
enc_out = self.enc_embedding(x_enc, None) # [B,T,C]
|
|
# TimesNet
|
|
for i in range(self.layer):
|
|
enc_out = self.layer_norm(self.model[i](enc_out))
|
|
# project back
|
|
dec_out = self.projection(enc_out)
|
|
|
|
# De-Normalization from Non-stationary Transformer
|
|
dec_out = dec_out.mul(
|
|
(stdev[:, 0, :].unsqueeze(1).repeat(
|
|
1, self.pred_len + self.seq_len, 1)))
|
|
dec_out = dec_out.add(
|
|
(means[:, 0, :].unsqueeze(1).repeat(
|
|
1, self.pred_len + self.seq_len, 1)))
|
|
return dec_out
|
|
|
|
def classification(self, x_enc, x_mark_enc):
|
|
# embedding
|
|
enc_out = self.enc_embedding(x_enc, None) # [B,T,C]
|
|
# TimesNet
|
|
for i in range(self.layer):
|
|
enc_out = self.layer_norm(self.model[i](enc_out))
|
|
|
|
# Output
|
|
# the output transformer encoder/decoder embeddings don't include non-linearity
|
|
output = self.act(enc_out)
|
|
output = self.dropout(output)
|
|
# zero-out padding embeddings
|
|
output = output * x_mark_enc.unsqueeze(-1)
|
|
# (batch_size, seq_length * d_model)
|
|
output = output.reshape(output.shape[0], -1)
|
|
output = self.projection(output) # (batch_size, num_classes)
|
|
return output
|
|
|
|
def forward(self, x_enc, x_mark_enc=None, x_dec=None, x_mark_dec=None, mask=None):
|
|
if self.task_name == 'long_term_forecast' or self.task_name == 'short_term_forecast':
|
|
dec_out = self.forecast(x_enc, x_mark_enc, x_dec, x_mark_dec)
|
|
return dec_out[:, -self.pred_len:, :] # [B, L, D]
|
|
if self.task_name == 'imputation':
|
|
dec_out = self.imputation(
|
|
x_enc, x_mark_enc, x_dec, x_mark_dec, mask)
|
|
return dec_out # [B, L, D]
|
|
if self.task_name == 'anomaly_detection':
|
|
dec_out = self.anomaly_detection(x_enc)
|
|
return dec_out # [B, L, D]
|
|
if self.task_name == 'classification':
|
|
dec_out = self.classification(x_enc, x_mark_enc)
|
|
return dec_out # [B, N]
|
|
return None
|