147 lines
5.8 KiB
Python
147 lines
5.8 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
import math
|
|
import numpy as np
|
|
import os
|
|
|
|
from layers.decomp import DECOMP
|
|
from .network import Network
|
|
from layers.revin import RevIN
|
|
|
|
class Model(nn.Module):
|
|
"""
|
|
xPatch with Q matrix transformation
|
|
- Applies RevIN normalization first
|
|
- Applies input Q matrix transformation after RevIN normalization (based on dataset and seq_len)
|
|
- Uses original xPatch logic (decomposition + dual stream network)
|
|
- Applies output Q matrix transformation before RevIN denormalization (based on dataset and pred_len)
|
|
"""
|
|
|
|
def __init__(self, configs):
|
|
super(Model, self).__init__()
|
|
|
|
# Parameters
|
|
seq_len = configs.seq_len # lookback window L
|
|
pred_len = configs.pred_len # prediction length (96, 192, 336, 720)
|
|
c_in = configs.enc_in # input channels
|
|
|
|
# Patching
|
|
patch_len = configs.patch_len
|
|
stride = configs.stride
|
|
padding_patch = configs.padding_patch
|
|
|
|
# Store for Q matrix transformations
|
|
self.seq_len = seq_len
|
|
self.pred_len = pred_len
|
|
|
|
# Load Q matrices
|
|
self.load_Q_matrices(configs)
|
|
|
|
# Normalization
|
|
self.revin = configs.revin
|
|
self.revin_layer = RevIN(c_in, affine=True, subtract_last=False)
|
|
|
|
# Moving Average
|
|
self.ma_type = configs.ma_type
|
|
alpha = configs.alpha # smoothing factor for EMA (Exponential Moving Average)
|
|
beta = configs.beta # smoothing factor for DEMA (Double Exponential Moving Average)
|
|
|
|
self.decomp = DECOMP(self.ma_type, alpha, beta)
|
|
self.net = Network(seq_len, pred_len, patch_len, stride, padding_patch)
|
|
|
|
def load_Q_matrices(self, configs):
|
|
"""Load pre-computed Q matrices for input and output transformations"""
|
|
# Get dataset name from configs, default to ETTm1 if not specified
|
|
dataset_name = getattr(configs, 'dataset', 'ETTm1')
|
|
|
|
# Input Q matrix (seq_len)
|
|
input_q_path = f'cov_mats/{dataset_name}/{dataset_name}_{configs.seq_len}_ratio1.0.npy'
|
|
# Output Q matrix (pred_len)
|
|
output_q_path = f'cov_mats/{dataset_name}/{dataset_name}_{configs.pred_len}_ratio1.0.npy'
|
|
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
|
|
if os.path.exists(input_q_path):
|
|
Q_input = np.load(input_q_path)
|
|
self.register_buffer('Q_input', torch.FloatTensor(Q_input).to(device))
|
|
print(f"Loaded input Q matrix from {input_q_path}, shape: {Q_input.shape}")
|
|
else:
|
|
print(f"Warning: Input Q matrix not found at {input_q_path}, using identity matrix")
|
|
self.register_buffer('Q_input', torch.eye(configs.seq_len).to(device))
|
|
|
|
if os.path.exists(output_q_path):
|
|
Q_output = np.load(output_q_path)
|
|
self.register_buffer('Q_output', torch.FloatTensor(Q_output).to(device))
|
|
print(f"Loaded output Q matrix from {output_q_path}, shape: {Q_output.shape}")
|
|
else:
|
|
print(f"Warning: Output Q matrix not found at {output_q_path}, using identity matrix")
|
|
self.register_buffer('Q_output', torch.eye(configs.pred_len).to(device))
|
|
|
|
def apply_input_Q_transformation(self, x):
|
|
"""
|
|
Apply input Q matrix transformation after RevIN normalization
|
|
Input: x with shape [B, T, N] where T = seq_len
|
|
Output: transformed x with shape [B, T, N]
|
|
"""
|
|
B, T, N = x.size()
|
|
assert T == self.seq_len, f"Expected seq_len {self.seq_len}, got {T}"
|
|
|
|
# Transpose to [B, N, T] for matrix multiplication
|
|
x_transposed = x.transpose(-1, -2) # [B, N, T]
|
|
|
|
# Apply input Q transformation: einsum 'bnt,tv->bnv'
|
|
# x_transposed: [B, N, T], Q_input.T: [T, T] -> result: [B, N, T]
|
|
x_trans = torch.einsum('bnt,tv->bnv', x_transposed, self.Q_input.transpose(-1, -2))
|
|
|
|
# Transpose back to [B, T, N]
|
|
x_transformed = x_trans.transpose(-1, -2) # [B, T, N]
|
|
|
|
return x_transformed
|
|
|
|
def apply_output_Q_transformation(self, x):
|
|
"""
|
|
Apply output Q matrix transformation to prediction output
|
|
Input: x with shape [B, pred_len, N]
|
|
Output: transformed x with shape [B, pred_len, N]
|
|
"""
|
|
B, T, N = x.size()
|
|
assert T == self.pred_len, f"Expected pred_len {self.pred_len}, got {T}"
|
|
|
|
# Transpose to [B, N, T] for matrix multiplication
|
|
x_transposed = x.transpose(-1, -2) # [B, N, pred_len]
|
|
|
|
# Apply output Q transformation: einsum 'bnt,tv->bnv'
|
|
# x_transposed: [B, N, pred_len], Q_output: [pred_len, pred_len] -> result: [B, N, pred_len]
|
|
x_trans = torch.einsum('bnt,tv->bnv', x_transposed, self.Q_output)
|
|
|
|
# Transpose back to [B, pred_len, N]
|
|
x_transformed = x_trans.transpose(-1, -2) # [B, pred_len, N]
|
|
|
|
return x_transformed
|
|
|
|
def forward(self, x):
|
|
# x: [Batch, Input, Channel]
|
|
|
|
# RevIN Normalization
|
|
if self.revin:
|
|
x = self.revin_layer(x, 'norm')
|
|
|
|
# Apply input Q matrix transformation after RevIN normalization
|
|
x_transformed = self.apply_input_Q_transformation(x)
|
|
|
|
# xPatch processing with Q-transformed input
|
|
if self.ma_type == 'reg': # If no decomposition, directly pass the input to the network
|
|
output = self.net(x_transformed, x_transformed)
|
|
else:
|
|
seasonal_init, trend_init = self.decomp(x_transformed)
|
|
output = self.net(seasonal_init, trend_init)
|
|
|
|
# Apply output Q matrix transformation to the prediction
|
|
output_transformed = self.apply_output_Q_transformation(output)
|
|
|
|
# RevIN Denormalization
|
|
if self.revin:
|
|
output_transformed = self.revin_layer(output_transformed, 'denorm')
|
|
|
|
return output_transformed
|