from .data_loader import Dataset_ETT_hour, Dataset_ETT_minute, Dataset_Custom, Dataset_Solar, Dataset_Pred from torch.utils.data import DataLoader data_dict = { 'ETTh1': Dataset_ETT_hour, 'ETTh2': Dataset_ETT_hour, 'ETTm1': Dataset_ETT_minute, 'ETTm2': Dataset_ETT_minute, 'Solar': Dataset_Solar, 'custom': Dataset_Custom, } def data_provider(args, flag): Data = data_dict[args.data] timeenc = 0 if args.embed != 'timeF' else 1 train_only = args.train_only if flag == 'test': shuffle_flag = False drop_last = True # drop_last = False # without the "drop-last" trick batch_size = args.batch_size freq = args.freq elif flag == 'pred': shuffle_flag = False drop_last = False batch_size = 1 freq = args.freq Data = Dataset_Pred else: shuffle_flag = True drop_last = True batch_size = args.batch_size freq = args.freq # if flag == 'train': # drop_last = False data_set = Data( root_path=args.root_path, data_path=args.data_path, flag=flag, size=[args.seq_len, args.label_len, args.pred_len], features=args.features, target=args.target, timeenc=timeenc, freq=freq, train_only=train_only ) print(flag, len(data_set)) data_loader = DataLoader( data_set, batch_size=batch_size, shuffle=shuffle_flag, num_workers=args.num_workers, drop_last=drop_last) return data_set, data_loader