import torch import torch.nn as nn import torch.nn.functional as F class my_Layernorm(nn.Module): """ Special designed layernorm for the seasonal part """ def __init__(self, channels): super(my_Layernorm, self).__init__() self.layernorm = nn.LayerNorm(channels) def forward(self, x): x_hat = self.layernorm(x) bias = torch.mean(x_hat, dim=1).unsqueeze(1).repeat(1, x.shape[1], 1) return x_hat - bias class moving_avg(nn.Module): """ Moving average block to highlight the trend of time series """ def __init__(self, kernel_size, stride): super(moving_avg, self).__init__() self.kernel_size = kernel_size self.avg = nn.AvgPool1d(kernel_size=kernel_size, stride=stride, padding=0) def forward(self, x): # padding on the both ends of time series front = x[:, 0:1, :].repeat(1, (self.kernel_size - 1) // 2, 1) end = x[:, -1:, :].repeat(1, (self.kernel_size - 1) // 2, 1) x = torch.cat([front, x, end], dim=1) x = self.avg(x.permute(0, 2, 1)) x = x.permute(0, 2, 1) return x class series_decomp(nn.Module): """ Series decomposition block """ def __init__(self, kernel_size): super(series_decomp, self).__init__() self.moving_avg = moving_avg(kernel_size, stride=1) def forward(self, x): moving_mean = self.moving_avg(x) res = x - moving_mean return res, moving_mean class series_decomp_multi(nn.Module): """ Multiple Series decomposition block from FEDformer """ def __init__(self, kernel_size): super(series_decomp_multi, self).__init__() self.kernel_size = kernel_size self.series_decomp = [series_decomp(kernel) for kernel in kernel_size] def forward(self, x): moving_mean = [] res = [] for func in self.series_decomp: sea, moving_avg = func(x) moving_mean.append(moving_avg) res.append(sea) sea = sum(res) / len(res) moving_mean = sum(moving_mean) / len(moving_mean) return sea, moving_mean class EncoderLayer(nn.Module): """ Autoformer encoder layer with the progressive decomposition architecture """ def __init__(self, attention, d_model, d_ff=None, moving_avg=25, dropout=0.1, activation="relu"): super(EncoderLayer, self).__init__() d_ff = d_ff or 4 * d_model self.attention = attention self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1, bias=False) self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1, bias=False) self.decomp1 = series_decomp(moving_avg) self.decomp2 = series_decomp(moving_avg) self.dropout = nn.Dropout(dropout) self.activation = F.relu if activation == "relu" else F.gelu def forward(self, x, attn_mask=None): new_x, attn = self.attention( x, x, x, attn_mask=attn_mask ) x = x + self.dropout(new_x) x, _ = self.decomp1(x) y = x y = self.dropout(self.activation(self.conv1(y.transpose(-1, 1)))) y = self.dropout(self.conv2(y).transpose(-1, 1)) res, _ = self.decomp2(x + y) return res, attn class Encoder(nn.Module): """ Autoformer encoder """ def __init__(self, attn_layers, conv_layers=None, norm_layer=None): super(Encoder, self).__init__() self.attn_layers = nn.ModuleList(attn_layers) self.conv_layers = nn.ModuleList(conv_layers) if conv_layers is not None else None self.norm = norm_layer def forward(self, x, attn_mask=None): attns = [] if self.conv_layers is not None: for attn_layer, conv_layer in zip(self.attn_layers, self.conv_layers): x, attn = attn_layer(x, attn_mask=attn_mask) x = conv_layer(x) attns.append(attn) x, attn = self.attn_layers[-1](x) attns.append(attn) else: for attn_layer in self.attn_layers: x, attn = attn_layer(x, attn_mask=attn_mask) attns.append(attn) if self.norm is not None: x = self.norm(x) return x, attns class DecoderLayer(nn.Module): """ Autoformer decoder layer with the progressive decomposition architecture """ def __init__(self, self_attention, cross_attention, d_model, c_out, d_ff=None, moving_avg=25, dropout=0.1, activation="relu"): super(DecoderLayer, self).__init__() d_ff = d_ff or 4 * d_model self.self_attention = self_attention self.cross_attention = cross_attention self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1, bias=False) self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1, bias=False) self.decomp1 = series_decomp(moving_avg) self.decomp2 = series_decomp(moving_avg) self.decomp3 = series_decomp(moving_avg) self.dropout = nn.Dropout(dropout) self.projection = nn.Conv1d(in_channels=d_model, out_channels=c_out, kernel_size=3, stride=1, padding=1, padding_mode='circular', bias=False) self.activation = F.relu if activation == "relu" else F.gelu def forward(self, x, cross, x_mask=None, cross_mask=None): x = x + self.dropout(self.self_attention( x, x, x, attn_mask=x_mask )[0]) x, trend1 = self.decomp1(x) x = x + self.dropout(self.cross_attention( x, cross, cross, attn_mask=cross_mask )[0]) x, trend2 = self.decomp2(x) y = x y = self.dropout(self.activation(self.conv1(y.transpose(-1, 1)))) y = self.dropout(self.conv2(y).transpose(-1, 1)) x, trend3 = self.decomp3(x + y) residual_trend = trend1 + trend2 + trend3 residual_trend = self.projection(residual_trend.permute(0, 2, 1)).transpose(1, 2) return x, residual_trend class Decoder(nn.Module): """ Autoformer encoder """ def __init__(self, layers, norm_layer=None, projection=None): super(Decoder, self).__init__() self.layers = nn.ModuleList(layers) self.norm = norm_layer self.projection = projection def forward(self, x, cross, x_mask=None, cross_mask=None, trend=None): for layer in self.layers: x, residual_trend = layer(x, cross, x_mask=x_mask, cross_mask=cross_mask) trend = trend + residual_trend if self.norm is not None: x = self.norm(x) if self.projection is not None: x = self.projection(x) return x, trend