Compare commits
4 Commits
dc8c9f1f09
...
6bba6613c9
Author | SHA1 | Date | |
---|---|---|---|
6bba6613c9 | |||
7fdf0f364d | |||
f977abeea7 | |||
6ee5c769c4 |
8
.gitignore
vendored
Normal file
8
.gitignore
vendored
Normal file
@ -0,0 +1,8 @@
|
||||
.aider*
|
||||
__pycache__/
|
||||
*.pyc
|
||||
*.pyo
|
||||
*.pyd
|
||||
*.npz
|
||||
*.gz
|
||||
|
21
dataflow/__init__.py
Normal file
21
dataflow/__init__.py
Normal file
@ -0,0 +1,21 @@
|
||||
from .tsf import preprocess_time_series, process_and_save_time_series
|
||||
from .data_factory import data_provider, data_dict
|
||||
from .data_loader import (
|
||||
Dataset_ETT_hour,
|
||||
Dataset_ETT_minute,
|
||||
Dataset_Custom,
|
||||
Dataset_Solar,
|
||||
Dataset_Pred
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
'preprocess_time_series',
|
||||
'process_and_save_time_series',
|
||||
'data_provider',
|
||||
'data_dict',
|
||||
'Dataset_ETT_hour',
|
||||
'Dataset_ETT_minute',
|
||||
'Dataset_Custom',
|
||||
'Dataset_Solar',
|
||||
'Dataset_Pred'
|
||||
]
|
57
dataflow/data_factory.py
Normal file
57
dataflow/data_factory.py
Normal file
@ -0,0 +1,57 @@
|
||||
from .data_loader import Dataset_ETT_hour, Dataset_ETT_minute, Dataset_Custom, Dataset_Solar, Dataset_Pred
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
data_dict = {
|
||||
'ETTh1': Dataset_ETT_hour,
|
||||
'ETTh2': Dataset_ETT_hour,
|
||||
'ETTm1': Dataset_ETT_minute,
|
||||
'ETTm2': Dataset_ETT_minute,
|
||||
'Solar': Dataset_Solar,
|
||||
'custom': Dataset_Custom,
|
||||
}
|
||||
|
||||
|
||||
def data_provider(args, flag):
|
||||
Data = data_dict[args.data]
|
||||
timeenc = 0 if args.embed != 'timeF' else 1
|
||||
train_only = args.train_only
|
||||
|
||||
if flag == 'test':
|
||||
shuffle_flag = False
|
||||
drop_last = True
|
||||
# drop_last = False # without the "drop-last" trick
|
||||
batch_size = args.batch_size
|
||||
freq = args.freq
|
||||
elif flag == 'pred':
|
||||
shuffle_flag = False
|
||||
drop_last = False
|
||||
batch_size = 1
|
||||
freq = args.freq
|
||||
Data = Dataset_Pred
|
||||
else:
|
||||
shuffle_flag = True
|
||||
drop_last = True
|
||||
batch_size = args.batch_size
|
||||
freq = args.freq
|
||||
# if flag == 'train':
|
||||
# drop_last = False
|
||||
|
||||
data_set = Data(
|
||||
root_path=args.root_path,
|
||||
data_path=args.data_path,
|
||||
flag=flag,
|
||||
size=[args.seq_len, args.label_len, args.pred_len],
|
||||
features=args.features,
|
||||
target=args.target,
|
||||
timeenc=timeenc,
|
||||
freq=freq,
|
||||
train_only=train_only
|
||||
)
|
||||
print(flag, len(data_set))
|
||||
data_loader = DataLoader(
|
||||
data_set,
|
||||
batch_size=batch_size,
|
||||
shuffle=shuffle_flag,
|
||||
num_workers=args.num_workers,
|
||||
drop_last=drop_last)
|
||||
return data_set, data_loader
|
479
dataflow/data_loader.py
Normal file
479
dataflow/data_loader.py
Normal file
@ -0,0 +1,479 @@
|
||||
import os
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import torch
|
||||
from torch.utils.data import Dataset
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
from utils.timefeatures import time_features
|
||||
import warnings
|
||||
|
||||
warnings.filterwarnings('ignore')
|
||||
|
||||
|
||||
class Dataset_ETT_hour(Dataset):
|
||||
def __init__(self, root_path, flag='train', size=None,
|
||||
features='S', data_path='ETTh1.csv',
|
||||
target='OT', scale=True, timeenc=0, freq='h', train_only=None):
|
||||
# size [seq_len, label_len, pred_len]
|
||||
# info
|
||||
if size == None:
|
||||
self.seq_len = 24 * 4 * 4
|
||||
self.label_len = 24 * 4
|
||||
self.pred_len = 24 * 4
|
||||
else:
|
||||
self.seq_len = size[0]
|
||||
self.label_len = size[1]
|
||||
self.pred_len = size[2]
|
||||
# init
|
||||
assert flag in ['train', 'test', 'val']
|
||||
type_map = {'train': 0, 'val': 1, 'test': 2}
|
||||
self.set_type = type_map[flag]
|
||||
|
||||
self.features = features
|
||||
self.target = target
|
||||
self.scale = scale
|
||||
self.timeenc = timeenc
|
||||
self.freq = freq
|
||||
|
||||
self.root_path = root_path
|
||||
self.data_path = data_path
|
||||
self.__read_data__()
|
||||
|
||||
def __read_data__(self):
|
||||
self.scaler = StandardScaler()
|
||||
df_raw = pd.read_csv(os.path.join(self.root_path,
|
||||
self.data_path))
|
||||
|
||||
border1s = [0, 12 * 30 * 24 - self.seq_len, 12 * 30 * 24 + 4 * 30 * 24 - self.seq_len]
|
||||
border2s = [12 * 30 * 24, 12 * 30 * 24 + 4 * 30 * 24, 12 * 30 * 24 + 8 * 30 * 24]
|
||||
border1 = border1s[self.set_type]
|
||||
border2 = border2s[self.set_type]
|
||||
|
||||
if self.features == 'M' or self.features == 'MS':
|
||||
cols_data = df_raw.columns[1:]
|
||||
df_data = df_raw[cols_data]
|
||||
elif self.features == 'S':
|
||||
df_data = df_raw[[self.target]]
|
||||
|
||||
if self.scale:
|
||||
train_data = df_data[border1s[0]:border2s[0]]
|
||||
self.scaler.fit(train_data.values)
|
||||
data = self.scaler.transform(df_data.values)
|
||||
else:
|
||||
data = df_data.values
|
||||
|
||||
df_stamp = df_raw[['date']][border1:border2]
|
||||
df_stamp['date'] = pd.to_datetime(df_stamp.date)
|
||||
if self.timeenc == 0:
|
||||
df_stamp['month'] = df_stamp.date.apply(lambda row: row.month, 1)
|
||||
df_stamp['day'] = df_stamp.date.apply(lambda row: row.day, 1)
|
||||
df_stamp['weekday'] = df_stamp.date.apply(lambda row: row.weekday(), 1)
|
||||
df_stamp['hour'] = df_stamp.date.apply(lambda row: row.hour, 1)
|
||||
data_stamp = df_stamp.drop(['date'], 1).values
|
||||
elif self.timeenc == 1:
|
||||
data_stamp = time_features(pd.to_datetime(df_stamp['date'].values), freq=self.freq)
|
||||
data_stamp = data_stamp.transpose(1, 0)
|
||||
|
||||
self.data_x = data[border1:border2]
|
||||
self.data_y = data[border1:border2]
|
||||
self.data_stamp = data_stamp
|
||||
|
||||
def __getitem__(self, index):
|
||||
s_begin = index
|
||||
s_end = s_begin + self.seq_len
|
||||
r_begin = s_end - self.label_len
|
||||
r_end = r_begin + self.label_len + self.pred_len
|
||||
|
||||
seq_x = self.data_x[s_begin:s_end]
|
||||
seq_y = self.data_y[r_begin:r_end]
|
||||
seq_x_mark = self.data_stamp[s_begin:s_end]
|
||||
seq_y_mark = self.data_stamp[r_begin:r_end]
|
||||
|
||||
return seq_x, seq_y, seq_x_mark, seq_y_mark
|
||||
|
||||
def __len__(self):
|
||||
return len(self.data_x) - self.seq_len - self.pred_len + 1
|
||||
|
||||
def inverse_transform(self, data):
|
||||
return self.scaler.inverse_transform(data)
|
||||
|
||||
|
||||
class Dataset_ETT_minute(Dataset):
|
||||
def __init__(self, root_path, flag='train', size=None,
|
||||
features='S', data_path='ETTm1.csv',
|
||||
target='OT', scale=True, timeenc=0, freq='t', train_only=False):
|
||||
# size [seq_len, label_len, pred_len]
|
||||
# info
|
||||
if size == None:
|
||||
self.seq_len = 24 * 4 * 4
|
||||
self.label_len = 24 * 4
|
||||
self.pred_len = 24 * 4
|
||||
else:
|
||||
self.seq_len = size[0]
|
||||
self.label_len = size[1]
|
||||
self.pred_len = size[2]
|
||||
# init
|
||||
assert flag in ['train', 'test', 'val']
|
||||
type_map = {'train': 0, 'val': 1, 'test': 2}
|
||||
self.set_type = type_map[flag]
|
||||
|
||||
self.features = features
|
||||
self.target = target
|
||||
self.scale = scale
|
||||
self.timeenc = timeenc
|
||||
self.freq = freq
|
||||
|
||||
self.root_path = root_path
|
||||
self.data_path = data_path
|
||||
self.__read_data__()
|
||||
|
||||
def __read_data__(self):
|
||||
self.scaler = StandardScaler()
|
||||
df_raw = pd.read_csv(os.path.join(self.root_path,
|
||||
self.data_path))
|
||||
|
||||
border1s = [0, 12 * 30 * 24 * 4 - self.seq_len, 12 * 30 * 24 * 4 + 4 * 30 * 24 * 4 - self.seq_len]
|
||||
border2s = [12 * 30 * 24 * 4, 12 * 30 * 24 * 4 + 4 * 30 * 24 * 4, 12 * 30 * 24 * 4 + 8 * 30 * 24 * 4]
|
||||
border1 = border1s[self.set_type]
|
||||
border2 = border2s[self.set_type]
|
||||
|
||||
if self.features == 'M' or self.features == 'MS':
|
||||
cols_data = df_raw.columns[1:]
|
||||
df_data = df_raw[cols_data]
|
||||
elif self.features == 'S':
|
||||
df_data = df_raw[[self.target]]
|
||||
|
||||
if self.scale:
|
||||
train_data = df_data[border1s[0]:border2s[0]]
|
||||
self.scaler.fit(train_data.values)
|
||||
data = self.scaler.transform(df_data.values)
|
||||
else:
|
||||
data = df_data.values
|
||||
|
||||
df_stamp = df_raw[['date']][border1:border2]
|
||||
df_stamp['date'] = pd.to_datetime(df_stamp.date)
|
||||
if self.timeenc == 0:
|
||||
df_stamp['month'] = df_stamp.date.apply(lambda row: row.month, 1)
|
||||
df_stamp['day'] = df_stamp.date.apply(lambda row: row.day, 1)
|
||||
df_stamp['weekday'] = df_stamp.date.apply(lambda row: row.weekday(), 1)
|
||||
df_stamp['hour'] = df_stamp.date.apply(lambda row: row.hour, 1)
|
||||
df_stamp['minute'] = df_stamp.date.apply(lambda row: row.minute, 1)
|
||||
df_stamp['minute'] = df_stamp.minute.map(lambda x: x // 15)
|
||||
data_stamp = df_stamp.drop(['date'], 1).values
|
||||
elif self.timeenc == 1:
|
||||
data_stamp = time_features(pd.to_datetime(df_stamp['date'].values), freq=self.freq)
|
||||
data_stamp = data_stamp.transpose(1, 0)
|
||||
|
||||
self.data_x = data[border1:border2]
|
||||
self.data_y = data[border1:border2]
|
||||
self.data_stamp = data_stamp
|
||||
|
||||
def __getitem__(self, index):
|
||||
s_begin = index
|
||||
s_end = s_begin + self.seq_len
|
||||
r_begin = s_end - self.label_len
|
||||
r_end = r_begin + self.label_len + self.pred_len
|
||||
|
||||
seq_x = self.data_x[s_begin:s_end]
|
||||
seq_y = self.data_y[r_begin:r_end]
|
||||
seq_x_mark = self.data_stamp[s_begin:s_end]
|
||||
seq_y_mark = self.data_stamp[r_begin:r_end]
|
||||
|
||||
return seq_x, seq_y, seq_x_mark, seq_y_mark
|
||||
|
||||
def __len__(self):
|
||||
return len(self.data_x) - self.seq_len - self.pred_len + 1
|
||||
|
||||
def inverse_transform(self, data):
|
||||
return self.scaler.inverse_transform(data)
|
||||
|
||||
|
||||
class Dataset_Custom(Dataset):
|
||||
def __init__(self, root_path, flag='train', size=None,
|
||||
features='S', data_path='ETTh1.csv',
|
||||
target='OT', scale=True, timeenc=0, freq='h', train_only=False):
|
||||
# size [seq_len, label_len, pred_len]
|
||||
# info
|
||||
if size == None:
|
||||
self.seq_len = 24 * 4 * 4
|
||||
self.label_len = 24 * 4
|
||||
self.pred_len = 24 * 4
|
||||
else:
|
||||
self.seq_len = size[0]
|
||||
self.label_len = size[1]
|
||||
self.pred_len = size[2]
|
||||
# init
|
||||
assert flag in ['train', 'test', 'val']
|
||||
type_map = {'train': 0, 'val': 1, 'test': 2}
|
||||
self.set_type = type_map[flag]
|
||||
|
||||
self.features = features
|
||||
self.target = target
|
||||
self.scale = scale
|
||||
self.timeenc = timeenc
|
||||
self.freq = freq
|
||||
self.train_only = train_only
|
||||
|
||||
self.root_path = root_path
|
||||
self.data_path = data_path
|
||||
self.__read_data__()
|
||||
|
||||
def __read_data__(self):
|
||||
self.scaler = StandardScaler()
|
||||
df_raw = pd.read_csv(os.path.join(self.root_path,
|
||||
self.data_path))
|
||||
|
||||
'''
|
||||
df_raw.columns: ['date', ...(other features), target feature]
|
||||
'''
|
||||
cols = list(df_raw.columns)
|
||||
if self.features == 'S':
|
||||
cols.remove(self.target)
|
||||
cols.remove('date')
|
||||
# print(cols)
|
||||
num_train = int(len(df_raw) * (0.7 if not self.train_only else 1))
|
||||
num_test = int(len(df_raw) * 0.2)
|
||||
num_vali = len(df_raw) - num_train - num_test
|
||||
border1s = [0, num_train - self.seq_len, len(df_raw) - num_test - self.seq_len]
|
||||
border2s = [num_train, num_train + num_vali, len(df_raw)]
|
||||
border1 = border1s[self.set_type]
|
||||
border2 = border2s[self.set_type]
|
||||
|
||||
if self.features == 'M' or self.features == 'MS':
|
||||
df_raw = df_raw[['date'] + cols]
|
||||
cols_data = df_raw.columns[1:]
|
||||
df_data = df_raw[cols_data]
|
||||
elif self.features == 'S':
|
||||
df_raw = df_raw[['date'] + cols + [self.target]]
|
||||
df_data = df_raw[[self.target]]
|
||||
|
||||
if self.scale:
|
||||
train_data = df_data[border1s[0]:border2s[0]]
|
||||
self.scaler.fit(train_data.values)
|
||||
# print(self.scaler.mean_)
|
||||
# exit()
|
||||
data = self.scaler.transform(df_data.values)
|
||||
else:
|
||||
data = df_data.values
|
||||
|
||||
df_stamp = df_raw[['date']][border1:border2]
|
||||
df_stamp['date'] = pd.to_datetime(df_stamp.date)
|
||||
if self.timeenc == 0:
|
||||
df_stamp['month'] = df_stamp.date.apply(lambda row: row.month, 1)
|
||||
df_stamp['day'] = df_stamp.date.apply(lambda row: row.day, 1)
|
||||
df_stamp['weekday'] = df_stamp.date.apply(lambda row: row.weekday(), 1)
|
||||
df_stamp['hour'] = df_stamp.date.apply(lambda row: row.hour, 1)
|
||||
data_stamp = df_stamp.drop(['date'], 1).values
|
||||
elif self.timeenc == 1:
|
||||
data_stamp = time_features(pd.to_datetime(df_stamp['date'].values), freq=self.freq)
|
||||
data_stamp = data_stamp.transpose(1, 0)
|
||||
|
||||
self.data_x = data[border1:border2]
|
||||
self.data_y = data[border1:border2]
|
||||
self.data_stamp = data_stamp
|
||||
|
||||
def __getitem__(self, index):
|
||||
s_begin = index
|
||||
s_end = s_begin + self.seq_len
|
||||
r_begin = s_end - self.label_len
|
||||
r_end = r_begin + self.label_len + self.pred_len
|
||||
|
||||
seq_x = self.data_x[s_begin:s_end]
|
||||
seq_y = self.data_y[r_begin:r_end]
|
||||
seq_x_mark = self.data_stamp[s_begin:s_end]
|
||||
seq_y_mark = self.data_stamp[r_begin:r_end]
|
||||
|
||||
return seq_x, seq_y, seq_x_mark, seq_y_mark
|
||||
|
||||
def __len__(self):
|
||||
return len(self.data_x) - self.seq_len - self.pred_len + 1
|
||||
|
||||
def inverse_transform(self, data):
|
||||
return self.scaler.inverse_transform(data)
|
||||
|
||||
class Dataset_Solar(Dataset):
|
||||
def __init__(self, root_path, flag='train', size=None,
|
||||
features='S', data_path='ETTh1.csv',
|
||||
target='OT', scale=True, timeenc=0, freq='h', train_only=False):
|
||||
# size [seq_len, label_len, pred_len]
|
||||
# info
|
||||
self.seq_len = size[0]
|
||||
self.label_len = size[1]
|
||||
self.pred_len = size[2]
|
||||
# init
|
||||
assert flag in ['train', 'test', 'val']
|
||||
type_map = {'train': 0, 'val': 1, 'test': 2}
|
||||
self.set_type = type_map[flag]
|
||||
|
||||
self.features = features
|
||||
self.target = target
|
||||
self.scale = scale
|
||||
self.timeenc = timeenc
|
||||
self.freq = freq
|
||||
|
||||
self.root_path = root_path
|
||||
self.data_path = data_path
|
||||
self.__read_data__()
|
||||
|
||||
def __read_data__(self):
|
||||
self.scaler = StandardScaler()
|
||||
df_raw = []
|
||||
with open(os.path.join(self.root_path, self.data_path), "r", encoding='utf-8') as f:
|
||||
for line in f.readlines():
|
||||
line = line.strip('\n').split(',')
|
||||
data_line = np.stack([float(i) for i in line])
|
||||
df_raw.append(data_line)
|
||||
df_raw = np.stack(df_raw, 0)
|
||||
df_raw = pd.DataFrame(df_raw)
|
||||
|
||||
num_train = int(len(df_raw) * 0.7)
|
||||
num_test = int(len(df_raw) * 0.2)
|
||||
num_valid = int(len(df_raw) * 0.1)
|
||||
border1s = [0, num_train - self.seq_len, len(df_raw) - num_test - self.seq_len]
|
||||
border2s = [num_train, num_train + num_valid, len(df_raw)]
|
||||
border1 = border1s[self.set_type]
|
||||
border2 = border2s[self.set_type]
|
||||
|
||||
df_data = df_raw.values
|
||||
|
||||
if self.scale:
|
||||
train_data = df_data[border1s[0]:border2s[0]]
|
||||
self.scaler.fit(train_data)
|
||||
data = self.scaler.transform(df_data)
|
||||
else:
|
||||
data = df_data
|
||||
|
||||
self.data_x = data[border1:border2]
|
||||
self.data_y = data[border1:border2]
|
||||
|
||||
def __getitem__(self, index):
|
||||
# 1. 定义输入序列 seq_x 的起止位置
|
||||
s_begin = index
|
||||
s_end = s_begin + self.seq_len
|
||||
# 2. 定义目标序列 seq_y 的起止位置
|
||||
# seq_y 的开始 (r_begin) 就是 seq_x 的结束 (s_end)
|
||||
r_begin = s_end
|
||||
# seq_y 的结束 (r_end) 是其开始位置加上预测长度 (pred_len)
|
||||
r_end = r_begin + self.pred_len
|
||||
# 3. 根据起止位置切片数据
|
||||
seq_x = self.data_x[s_begin:s_end]
|
||||
seq_y = self.data_y[r_begin:r_end]
|
||||
seq_x_mark = torch.zeros((seq_x.shape[0], 1))
|
||||
seq_y_mark = torch.zeros((seq_y.shape[0], 1)) # 长度为 pred_len
|
||||
seq_x = seq_x.astype('float32')
|
||||
seq_y = seq_y.astype('float32')
|
||||
return seq_x, seq_y, seq_x_mark, seq_y_mark
|
||||
|
||||
def __len__(self):
|
||||
return len(self.data_x) - self.seq_len - self.pred_len + 1
|
||||
|
||||
def inverse_transform(self, data):
|
||||
return self.scaler.inverse_transform(data)
|
||||
|
||||
class Dataset_Pred(Dataset):
|
||||
def __init__(self, root_path, flag='pred', size=None,
|
||||
features='S', data_path='ETTh1.csv',
|
||||
target='OT', scale=True, inverse=False, timeenc=0, freq='15min', cols=None, train_only=False):
|
||||
# size [seq_len, label_len, pred_len]
|
||||
# info
|
||||
if size == None:
|
||||
self.seq_len = 24 * 4 * 4
|
||||
self.label_len = 24 * 4
|
||||
self.pred_len = 24 * 4
|
||||
else:
|
||||
self.seq_len = size[0]
|
||||
self.label_len = size[1]
|
||||
self.pred_len = size[2]
|
||||
# init
|
||||
assert flag in ['pred']
|
||||
|
||||
self.features = features
|
||||
self.target = target
|
||||
self.scale = scale
|
||||
self.inverse = inverse
|
||||
self.timeenc = timeenc
|
||||
self.freq = freq
|
||||
self.cols = cols
|
||||
self.root_path = root_path
|
||||
self.data_path = data_path
|
||||
self.__read_data__()
|
||||
|
||||
def __read_data__(self):
|
||||
self.scaler = StandardScaler()
|
||||
df_raw = pd.read_csv(os.path.join(self.root_path,
|
||||
self.data_path))
|
||||
'''
|
||||
df_raw.columns: ['date', ...(other features), target feature]
|
||||
'''
|
||||
if self.cols:
|
||||
cols = self.cols.copy()
|
||||
else:
|
||||
cols = list(df_raw.columns)
|
||||
self.cols = cols.copy()
|
||||
cols.remove('date')
|
||||
if self.features == 'S':
|
||||
cols.remove(self.target)
|
||||
border1 = len(df_raw) - self.seq_len
|
||||
border2 = len(df_raw)
|
||||
|
||||
if self.features == 'M' or self.features == 'MS':
|
||||
df_raw = df_raw[['date'] + cols]
|
||||
cols_data = df_raw.columns[1:]
|
||||
df_data = df_raw[cols_data]
|
||||
elif self.features == 'S':
|
||||
df_raw = df_raw[['date'] + cols + [self.target]]
|
||||
df_data = df_raw[[self.target]]
|
||||
|
||||
if self.scale:
|
||||
self.scaler.fit(df_data.values)
|
||||
data = self.scaler.transform(df_data.values)
|
||||
else:
|
||||
data = df_data.values
|
||||
|
||||
tmp_stamp = df_raw[['date']][border1:border2]
|
||||
tmp_stamp['date'] = pd.to_datetime(tmp_stamp.date)
|
||||
pred_dates = pd.date_range(tmp_stamp.date.values[-1], periods=self.pred_len + 1, freq=self.freq)
|
||||
|
||||
df_stamp = pd.DataFrame(columns=['date'])
|
||||
df_stamp.date = list(tmp_stamp.date.values) + list(pred_dates[1:])
|
||||
self.future_dates = list(pred_dates[1:])
|
||||
if self.timeenc == 0:
|
||||
df_stamp['month'] = df_stamp.date.apply(lambda row: row.month, 1)
|
||||
df_stamp['day'] = df_stamp.date.apply(lambda row: row.day, 1)
|
||||
df_stamp['weekday'] = df_stamp.date.apply(lambda row: row.weekday(), 1)
|
||||
df_stamp['hour'] = df_stamp.date.apply(lambda row: row.hour, 1)
|
||||
df_stamp['minute'] = df_stamp.date.apply(lambda row: row.minute, 1)
|
||||
df_stamp['minute'] = df_stamp.minute.map(lambda x: x // 15)
|
||||
data_stamp = df_stamp.drop(['date'], 1).values
|
||||
elif self.timeenc == 1:
|
||||
data_stamp = time_features(pd.to_datetime(df_stamp['date'].values), freq=self.freq)
|
||||
data_stamp = data_stamp.transpose(1, 0)
|
||||
|
||||
self.data_x = data[border1:border2]
|
||||
if self.inverse:
|
||||
self.data_y = df_data.values[border1:border2]
|
||||
else:
|
||||
self.data_y = data[border1:border2]
|
||||
self.data_stamp = data_stamp
|
||||
|
||||
def __getitem__(self, index):
|
||||
s_begin = index
|
||||
s_end = s_begin + self.seq_len
|
||||
r_begin = s_end - self.label_len
|
||||
r_end = r_begin + self.label_len + self.pred_len
|
||||
|
||||
seq_x = self.data_x[s_begin:s_end]
|
||||
if self.inverse:
|
||||
seq_y = self.data_x[r_begin:r_begin + self.label_len]
|
||||
else:
|
||||
seq_y = self.data_y[r_begin:r_begin + self.label_len]
|
||||
seq_x_mark = self.data_stamp[s_begin:s_end]
|
||||
seq_y_mark = self.data_stamp[r_begin:r_end]
|
||||
|
||||
return seq_x, seq_y, seq_x_mark, seq_y_mark
|
||||
|
||||
def __len__(self):
|
||||
return len(self.data_x) - self.seq_len + 1
|
||||
|
||||
def inverse_transform(self, data):
|
||||
return self.scaler.inverse_transform(data)
|
328
dataflow/tsf.py
Normal file
328
dataflow/tsf.py
Normal file
@ -0,0 +1,328 @@
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
import joblib
|
||||
from utils.timefeatures import time_features
|
||||
import os
|
||||
|
||||
def get_ett_dataset_borders(dataset_name, data_len, input_len):
|
||||
"""
|
||||
ETT系列数据集的特定边界处理函数
|
||||
|
||||
Args:
|
||||
dataset_name (str): 数据集名称(如 'ETTm1', 'ETTh1')
|
||||
data_len (int): 数据总长度
|
||||
input_len (int): 输入序列长度
|
||||
|
||||
Returns:
|
||||
tuple: (border1s, border2s) 边界点列表
|
||||
"""
|
||||
if dataset_name.startswith('ETTm'):
|
||||
# ETTm1, ETTm2: 15分钟间隔,每天96个点
|
||||
border1s = [0, 12 * 30 * 96 - input_len, 12 * 30 * 96 + 4 * 30 * 96 - input_len]
|
||||
border2s = [12 * 30 * 96, 12 * 30 * 96 + 4 * 30 * 96, 12 * 30 * 96 + 8 * 30 * 96]
|
||||
elif dataset_name.startswith('ETTh'):
|
||||
# ETTh1, ETTh2: 小时间隔,每天24个点
|
||||
border1s = [0, 12 * 30 * 24 - input_len, 12 * 30 * 24 + 4 * 30 * 24 - input_len]
|
||||
border2s = [12 * 30 * 24, 12 * 30 * 24 + 4 * 30 * 24, 12 * 30 * 24 + 8 * 30 * 24]
|
||||
else:
|
||||
raise ValueError(f"Unknown ETT dataset: {dataset_name}")
|
||||
|
||||
return border1s, border2s
|
||||
|
||||
# 示例:可以添加其他特定数据集的处理函数
|
||||
# def get_weather_dataset_borders(dataset_name, data_len, input_len):
|
||||
# """
|
||||
# Weather数据集的特定边界处理函数
|
||||
# """
|
||||
# # 假设weather数据集使用不同的分割策略
|
||||
# # 比如:前80%训练,中间10%验证,后10%测试
|
||||
# train_end = int(data_len * 0.8)
|
||||
# val_end = int(data_len * 0.9)
|
||||
#
|
||||
# border1s = [0, train_end - input_len, val_end - input_len]
|
||||
# border2s = [train_end, val_end, data_len]
|
||||
#
|
||||
# return border1s, border2s
|
||||
|
||||
# 数据集处理函数映射表
|
||||
DATASET_HANDLERS = {
|
||||
'ETTm1': get_ett_dataset_borders,
|
||||
'ETTm2': get_ett_dataset_borders,
|
||||
'ETTh1': get_ett_dataset_borders,
|
||||
'ETTh2': get_ett_dataset_borders,
|
||||
# 可以在这里添加更多数据集的处理函数
|
||||
# 'weather': get_weather_dataset_borders,
|
||||
}
|
||||
|
||||
def preprocess_time_series(
|
||||
csv_data,
|
||||
input_len,
|
||||
pred_len,
|
||||
slide_step,
|
||||
dataset_name=None, # 新增:数据集名称参数
|
||||
data_path_name='ETTm1.csv', # 保留向后兼容,但优先使用dataset_name
|
||||
selected_columns=None,
|
||||
date_column='date',
|
||||
freq='h', # 按照分析,原文 ETTm1/ETTh1 实验均使用 'h'
|
||||
split_method='auto', # 'auto', 'specific', 'ratio'
|
||||
train_ratio=0.7,
|
||||
val_ratio=0.1,
|
||||
test_ratio=0.2,
|
||||
has_time_column=True, # 新增:是否包含时间列
|
||||
):
|
||||
"""
|
||||
修改版:根据 TimesNet 原文逻辑预处理时序数据。
|
||||
1. 支持三种分割方法:auto(自动选择)、specific(特定数据集)、ratio(比例分割)
|
||||
2. 支持基于数据集名称的特定处理函数调用
|
||||
3. 滑动窗口的目标 y 长度为 pred_len (按用户要求)。
|
||||
4. 支持无时间列的数据集处理
|
||||
|
||||
Args:
|
||||
csv_data (pd.DataFrame or str): CSV data as DataFrame or path to CSV file
|
||||
input_len (int): Length of input sequence (seq_len in original paper)
|
||||
pred_len (int): Length of prediction sequence
|
||||
slide_step (int): Step size for sliding window
|
||||
dataset_name (str): 数据集名称(如 'ETTm1', 'weather'),优先使用此参数
|
||||
data_path_name (str): 数据文件名(如 'ETTm1.csv'),向后兼容用
|
||||
selected_columns (list): List of column names to use (default: None, uses all).
|
||||
date_column (str): Name of the date column (default: 'date').
|
||||
freq (str): Frequency for time features ('h' for hourly, 't' for minutely).
|
||||
split_method (str): Data split method - 'auto', 'specific', or 'ratio'
|
||||
- 'auto': automatically choose based on dataset_name
|
||||
- 'specific': use dataset-specific split function
|
||||
- 'ratio': use ratio-based split
|
||||
train_ratio (float): Training set ratio (only used when split_method='ratio')
|
||||
val_ratio (float): Validation set ratio (only used when split_method='ratio')
|
||||
test_ratio (float): Test set ratio (only used when split_method='ratio')
|
||||
has_time_column (bool): Whether the dataset has a time column
|
||||
|
||||
Returns:
|
||||
dict: Dictionary containing processed data.
|
||||
"""
|
||||
# 1. 加载数据
|
||||
if isinstance(csv_data, str):
|
||||
try:
|
||||
data = pd.read_csv(csv_data)
|
||||
except FileNotFoundError:
|
||||
raise FileNotFoundError(f"CSV file not found: {csv_data}")
|
||||
except Exception as e:
|
||||
raise Exception(f"Error loading CSV file: {e}")
|
||||
else:
|
||||
data = csv_data.copy()
|
||||
|
||||
# 2. 提取时间特征(仅在有时间列时)
|
||||
if has_time_column and date_column in data.columns:
|
||||
date_index = pd.to_datetime(data[date_column])
|
||||
if isinstance(date_index, pd.Series):
|
||||
date_index = pd.DatetimeIndex(date_index)
|
||||
time_stamp = time_features(date_index, freq=freq)
|
||||
time_stamp = time_stamp.transpose(1, 0) # Shape: (n_samples, n_time_features)
|
||||
elif has_time_column:
|
||||
raise ValueError(f"Date column '{date_column}' not found in data")
|
||||
else:
|
||||
# 没有时间列,创建空的时间戳数组
|
||||
time_stamp = None
|
||||
|
||||
# 3. 选择数据列
|
||||
if selected_columns is not None:
|
||||
data = data[selected_columns]
|
||||
else:
|
||||
if has_time_column:
|
||||
feature_columns = [col for col in data.columns if col != date_column]
|
||||
else:
|
||||
feature_columns = list(data.columns)
|
||||
data = data[feature_columns]
|
||||
|
||||
# 4. 【核心修改】根据split_method选择数据集分割方式
|
||||
# 确定使用的数据集名称
|
||||
if dataset_name is None:
|
||||
# 向后兼容:从文件路径提取数据集名称
|
||||
dataset_name = os.path.splitext(data_path_name)[0]
|
||||
|
||||
if split_method == 'auto':
|
||||
# 自动选择:特定数据集用specific,其他用ratio
|
||||
if dataset_name in DATASET_HANDLERS:
|
||||
split_method = 'specific'
|
||||
else:
|
||||
split_method = 'ratio'
|
||||
|
||||
if split_method == 'specific':
|
||||
# 使用特定数据集的处理函数
|
||||
if dataset_name in DATASET_HANDLERS:
|
||||
handler_func = DATASET_HANDLERS[dataset_name]
|
||||
border1s, border2s = handler_func(dataset_name, len(data), input_len)
|
||||
print(f"Using specific split for dataset '{dataset_name}'")
|
||||
else:
|
||||
print(f"Warning: No specific handler for dataset '{dataset_name}'. Falling back to ratio split.")
|
||||
split_method = 'ratio'
|
||||
|
||||
if split_method == 'ratio':
|
||||
# 使用比例分割数据集
|
||||
# 验证比例和为1
|
||||
if abs(train_ratio + val_ratio + test_ratio - 1.0) > 1e-6:
|
||||
raise ValueError(f"Ratios must sum to 1.0, got {train_ratio + val_ratio + test_ratio}")
|
||||
|
||||
total_len = len(data)
|
||||
num_train = int(total_len * train_ratio)
|
||||
num_val = int(total_len * val_ratio)
|
||||
num_test = total_len - num_train - num_val # 确保所有数据都被使用
|
||||
|
||||
border1s = [0, num_train - input_len, num_train + num_val - input_len]
|
||||
border2s = [num_train, num_train + num_val, total_len]
|
||||
|
||||
print(f"Using ratio split for dataset '{dataset_name}': train={train_ratio:.1%}, val={val_ratio:.1%}, test={test_ratio:.1%}")
|
||||
print(f"Data points: train={num_train}, val={num_val}, test={num_test}")
|
||||
|
||||
train_data = data.iloc[border1s[0]:border2s[0]].values
|
||||
val_data = data.iloc[border1s[1]:border2s[1]].values
|
||||
test_data = data.iloc[border1s[2]:border2s[2]].values
|
||||
|
||||
# 处理时间戳(仅在有时间列时)
|
||||
if time_stamp is not None:
|
||||
train_time_stamp = time_stamp[border1s[0]:border2s[0]]
|
||||
val_time_stamp = time_stamp[border1s[1]:border2s[1]]
|
||||
test_time_stamp = time_stamp[border1s[2]:border2s[2]]
|
||||
else:
|
||||
train_time_stamp = None
|
||||
val_time_stamp = None
|
||||
test_time_stamp = None
|
||||
|
||||
# 5. 归一化 (Fit on training data only)
|
||||
scaler = StandardScaler()
|
||||
scaler.fit(train_data)
|
||||
|
||||
train_data_scaled = scaler.transform(train_data)
|
||||
val_data_scaled = scaler.transform(val_data)
|
||||
test_data_scaled = scaler.transform(test_data)
|
||||
|
||||
# 6. 【核心修改】使用您的滑窗逻辑创建样本
|
||||
train_x, train_y = create_sliding_windows(train_data_scaled, input_len, pred_len, slide_step)
|
||||
val_x, val_y = create_sliding_windows(val_data_scaled, input_len, pred_len, slide_step)
|
||||
test_x, test_y = create_sliding_windows(test_data_scaled, input_len, pred_len, slide_step)
|
||||
|
||||
# 处理时间标记(仅在有时间列时)
|
||||
if train_time_stamp is not None:
|
||||
train_x_mark, train_y_mark = create_sliding_windows(train_time_stamp, input_len, pred_len, slide_step)
|
||||
val_x_mark, val_y_mark = create_sliding_windows(val_time_stamp, input_len, pred_len, slide_step)
|
||||
test_x_mark, test_y_mark = create_sliding_windows(test_time_stamp, input_len, pred_len, slide_step)
|
||||
else:
|
||||
train_x_mark, train_y_mark = None, None
|
||||
val_x_mark, val_y_mark = None, None
|
||||
test_x_mark, test_y_mark = None, None
|
||||
|
||||
return {
|
||||
'train_x': train_x, 'train_y': train_y,
|
||||
'train_x_mark': train_x_mark, 'train_y_mark': train_y_mark,
|
||||
'val_x': val_x, 'val_y': val_y,
|
||||
'val_x_mark': val_x_mark, 'val_y_mark': val_y_mark,
|
||||
'test_x': test_x, 'test_y': test_y,
|
||||
'test_x_mark': test_x_mark, 'test_y_mark': test_y_mark,
|
||||
'scaler': scaler
|
||||
}
|
||||
|
||||
|
||||
def create_sliding_windows(data, input_len, pred_len, slide_step):
|
||||
"""
|
||||
Create sliding windows from time series data.
|
||||
Target `y` has length `pred_len`.
|
||||
|
||||
Args:
|
||||
data (np.ndarray): Time series data (features or time marks)
|
||||
input_len (int): Length of input sequence
|
||||
pred_len (int): Length of prediction sequence
|
||||
slide_step (int): Step size for sliding window
|
||||
|
||||
Returns:
|
||||
tuple: (X, y) where X is input sequences and y is target sequences
|
||||
"""
|
||||
total_window_len = input_len + pred_len
|
||||
X, y = [], []
|
||||
|
||||
n_samples = len(data)
|
||||
|
||||
for start_idx in range(0, n_samples, slide_step):
|
||||
end_idx = start_idx + total_window_len
|
||||
|
||||
# Skip if there's not enough data for a full window
|
||||
if end_idx > n_samples:
|
||||
break
|
||||
|
||||
# Split window into input and target
|
||||
input_window = data[start_idx : start_idx + input_len]
|
||||
target_window = data[start_idx + input_len : end_idx]
|
||||
|
||||
X.append(input_window)
|
||||
y.append(target_window)
|
||||
|
||||
return np.array(X), np.array(y)
|
||||
|
||||
|
||||
def process_and_save_time_series(
|
||||
csv_path,
|
||||
output_file,
|
||||
input_len,
|
||||
pred_len,
|
||||
slide_step,
|
||||
dataset_name=None, # 新增:数据集名称参数
|
||||
selected_columns=None,
|
||||
date_column='date',
|
||||
freq='h',
|
||||
split_method='auto',
|
||||
train_ratio=0.7,
|
||||
val_ratio=0.1,
|
||||
test_ratio=0.2,
|
||||
has_time_column=True, # 新增:是否包含时间列
|
||||
):
|
||||
"""
|
||||
Process time series data and save it as an NPZ file along with the fitted scaler.
|
||||
This function now calls the modified preprocess_time_series with flexible split methods.
|
||||
|
||||
Args:
|
||||
dataset_name (str): 数据集名称(如 'ETTm1', 'weather'),优先使用此参数
|
||||
split_method (str): Data split method - 'auto', 'specific', or 'ratio'
|
||||
train_ratio (float): Training set ratio (only used when split_method='ratio')
|
||||
val_ratio (float): Validation set ratio (only used when split_method='ratio')
|
||||
test_ratio (float): Test set ratio (only used when split_method='ratio')
|
||||
has_time_column (bool): Whether the dataset has a time column
|
||||
"""
|
||||
# Create output directory if it doesn't exist
|
||||
output_dir = os.path.dirname(os.path.abspath(output_file))
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
|
||||
# Extract data file name from path
|
||||
data_path_name = os.path.basename(csv_path)
|
||||
|
||||
# Load and preprocess the time series data using the new logic
|
||||
result = preprocess_time_series(
|
||||
csv_data=csv_path,
|
||||
input_len=input_len,
|
||||
pred_len=pred_len,
|
||||
slide_step=slide_step,
|
||||
dataset_name=dataset_name,
|
||||
data_path_name=data_path_name,
|
||||
selected_columns=selected_columns,
|
||||
date_column=date_column,
|
||||
freq=freq,
|
||||
split_method=split_method,
|
||||
train_ratio=train_ratio,
|
||||
val_ratio=val_ratio,
|
||||
test_ratio=test_ratio,
|
||||
has_time_column=has_time_column
|
||||
)
|
||||
|
||||
# Extract the processed data
|
||||
scaler = result.pop('scaler') # Pop scaler to not save it in the npz
|
||||
|
||||
# Save the scaler object separately
|
||||
scaler_file = output_file.replace('.npz', '_scaler.gz')
|
||||
joblib.dump(scaler, scaler_file)
|
||||
print(f"Saved scaler to {scaler_file}")
|
||||
|
||||
# Save the processed data arrays as .npz file
|
||||
np.savez(output_file, **result)
|
||||
print(f"Saved processed data to {output_file}")
|
||||
|
||||
return result
|
||||
|
||||
|
60
layers/Conv_Blocks.py
Normal file
60
layers/Conv_Blocks.py
Normal file
@ -0,0 +1,60 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
class Inception_Block_V1(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, num_kernels=6, init_weight=True):
|
||||
super(Inception_Block_V1, self).__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.num_kernels = num_kernels
|
||||
kernels = []
|
||||
for i in range(self.num_kernels):
|
||||
kernels.append(nn.Conv2d(in_channels, out_channels, kernel_size=2 * i + 1, padding=i))
|
||||
self.kernels = nn.ModuleList(kernels)
|
||||
if init_weight:
|
||||
self._initialize_weights()
|
||||
|
||||
def _initialize_weights(self):
|
||||
for m in self.modules():
|
||||
if isinstance(m, nn.Conv2d):
|
||||
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
||||
if m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
|
||||
def forward(self, x):
|
||||
res_list = []
|
||||
for i in range(self.num_kernels):
|
||||
res_list.append(self.kernels[i](x))
|
||||
res = torch.stack(res_list, dim=-1).mean(-1)
|
||||
return res
|
||||
|
||||
|
||||
class Inception_Block_V2(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, num_kernels=6, init_weight=True):
|
||||
super(Inception_Block_V2, self).__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.num_kernels = num_kernels
|
||||
kernels = []
|
||||
for i in range(self.num_kernels // 2):
|
||||
kernels.append(nn.Conv2d(in_channels, out_channels, kernel_size=[1, 2 * i + 3], padding=[0, i + 1]))
|
||||
kernels.append(nn.Conv2d(in_channels, out_channels, kernel_size=[2 * i + 3, 1], padding=[i + 1, 0]))
|
||||
kernels.append(nn.Conv2d(in_channels, out_channels, kernel_size=1))
|
||||
self.kernels = nn.ModuleList(kernels)
|
||||
if init_weight:
|
||||
self._initialize_weights()
|
||||
|
||||
def _initialize_weights(self):
|
||||
for m in self.modules():
|
||||
if isinstance(m, nn.Conv2d):
|
||||
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
||||
if m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
|
||||
def forward(self, x):
|
||||
res_list = []
|
||||
for i in range(self.num_kernels // 2 * 2 + 1):
|
||||
res_list.append(self.kernels[i](x))
|
||||
res = torch.stack(res_list, dim=-1).mean(-1)
|
||||
return res
|
190
layers/Embed.py
Normal file
190
layers/Embed.py
Normal file
@ -0,0 +1,190 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.nn.utils import weight_norm
|
||||
import math
|
||||
|
||||
|
||||
class PositionalEmbedding(nn.Module):
|
||||
def __init__(self, d_model, max_len=5000):
|
||||
super(PositionalEmbedding, self).__init__()
|
||||
# Compute the positional encodings once in log space.
|
||||
pe = torch.zeros(max_len, d_model).float()
|
||||
pe.require_grad = False
|
||||
|
||||
position = torch.arange(0, max_len).float().unsqueeze(1)
|
||||
div_term = (torch.arange(0, d_model, 2).float()
|
||||
* -(math.log(10000.0) / d_model)).exp()
|
||||
|
||||
pe[:, 0::2] = torch.sin(position * div_term)
|
||||
pe[:, 1::2] = torch.cos(position * div_term)
|
||||
|
||||
pe = pe.unsqueeze(0)
|
||||
self.register_buffer('pe', pe)
|
||||
|
||||
def forward(self, x):
|
||||
return self.pe[:, :x.size(1)]
|
||||
|
||||
|
||||
class TokenEmbedding(nn.Module):
|
||||
def __init__(self, c_in, d_model):
|
||||
super(TokenEmbedding, self).__init__()
|
||||
padding = 1 if torch.__version__ >= '1.5.0' else 2
|
||||
self.tokenConv = nn.Conv1d(in_channels=c_in, out_channels=d_model,
|
||||
kernel_size=3, padding=padding, padding_mode='circular', bias=False)
|
||||
for m in self.modules():
|
||||
if isinstance(m, nn.Conv1d):
|
||||
nn.init.kaiming_normal_(
|
||||
m.weight, mode='fan_in', nonlinearity='leaky_relu')
|
||||
|
||||
def forward(self, x):
|
||||
x = self.tokenConv(x.permute(0, 2, 1)).transpose(1, 2)
|
||||
return x
|
||||
|
||||
|
||||
class FixedEmbedding(nn.Module):
|
||||
def __init__(self, c_in, d_model):
|
||||
super(FixedEmbedding, self).__init__()
|
||||
|
||||
w = torch.zeros(c_in, d_model).float()
|
||||
w.require_grad = False
|
||||
|
||||
position = torch.arange(0, c_in).float().unsqueeze(1)
|
||||
div_term = (torch.arange(0, d_model, 2).float()
|
||||
* -(math.log(10000.0) / d_model)).exp()
|
||||
|
||||
w[:, 0::2] = torch.sin(position * div_term)
|
||||
w[:, 1::2] = torch.cos(position * div_term)
|
||||
|
||||
self.emb = nn.Embedding(c_in, d_model)
|
||||
self.emb.weight = nn.Parameter(w, requires_grad=False)
|
||||
|
||||
def forward(self, x):
|
||||
return self.emb(x).detach()
|
||||
|
||||
|
||||
class TemporalEmbedding(nn.Module):
|
||||
def __init__(self, d_model, embed_type='fixed', freq='h'):
|
||||
super(TemporalEmbedding, self).__init__()
|
||||
|
||||
minute_size = 4
|
||||
hour_size = 24
|
||||
weekday_size = 7
|
||||
day_size = 32
|
||||
month_size = 13
|
||||
|
||||
Embed = FixedEmbedding if embed_type == 'fixed' else nn.Embedding
|
||||
if freq == 't':
|
||||
self.minute_embed = Embed(minute_size, d_model)
|
||||
self.hour_embed = Embed(hour_size, d_model)
|
||||
self.weekday_embed = Embed(weekday_size, d_model)
|
||||
self.day_embed = Embed(day_size, d_model)
|
||||
self.month_embed = Embed(month_size, d_model)
|
||||
|
||||
def forward(self, x):
|
||||
x = x.long()
|
||||
minute_x = self.minute_embed(x[:, :, 4]) if hasattr(
|
||||
self, 'minute_embed') else 0.
|
||||
hour_x = self.hour_embed(x[:, :, 3])
|
||||
weekday_x = self.weekday_embed(x[:, :, 2])
|
||||
day_x = self.day_embed(x[:, :, 1])
|
||||
month_x = self.month_embed(x[:, :, 0])
|
||||
|
||||
return hour_x + weekday_x + day_x + month_x + minute_x
|
||||
|
||||
|
||||
class TimeFeatureEmbedding(nn.Module):
|
||||
def __init__(self, d_model, embed_type='timeF', freq='h'):
|
||||
super(TimeFeatureEmbedding, self).__init__()
|
||||
|
||||
freq_map = {'h': 4, 't': 5, 's': 6,
|
||||
'm': 1, 'a': 1, 'w': 2, 'd': 3, 'b': 3}
|
||||
d_inp = freq_map[freq]
|
||||
self.embed = nn.Linear(d_inp, d_model, bias=False)
|
||||
|
||||
def forward(self, x):
|
||||
return self.embed(x)
|
||||
|
||||
|
||||
class DataEmbedding(nn.Module):
|
||||
def __init__(self, c_in, d_model, embed_type='fixed', freq='h', dropout=0.1):
|
||||
super(DataEmbedding, self).__init__()
|
||||
|
||||
self.value_embedding = TokenEmbedding(c_in=c_in, d_model=d_model)
|
||||
self.position_embedding = PositionalEmbedding(d_model=d_model)
|
||||
self.temporal_embedding = TemporalEmbedding(d_model=d_model, embed_type=embed_type,
|
||||
freq=freq) if embed_type != 'timeF' else TimeFeatureEmbedding(
|
||||
d_model=d_model, embed_type=embed_type, freq=freq)
|
||||
self.dropout = nn.Dropout(p=dropout)
|
||||
|
||||
def forward(self, x, x_mark):
|
||||
if x_mark is None:
|
||||
x = self.value_embedding(x) + self.position_embedding(x)
|
||||
else:
|
||||
x = self.value_embedding(
|
||||
x) + self.temporal_embedding(x_mark) + self.position_embedding(x)
|
||||
return self.dropout(x)
|
||||
|
||||
|
||||
class DataEmbedding_inverted(nn.Module):
|
||||
def __init__(self, c_in, d_model, embed_type='fixed', freq='h', dropout=0.1):
|
||||
super(DataEmbedding_inverted, self).__init__()
|
||||
self.value_embedding = nn.Linear(c_in, d_model)
|
||||
self.dropout = nn.Dropout(p=dropout)
|
||||
|
||||
def forward(self, x, x_mark):
|
||||
x = x.permute(0, 2, 1)
|
||||
# x: [Batch Variate Time]
|
||||
if x_mark is None:
|
||||
x = self.value_embedding(x)
|
||||
else:
|
||||
x = self.value_embedding(torch.cat([x, x_mark.permute(0, 2, 1)], 1))
|
||||
# x: [Batch Variate d_model]
|
||||
return self.dropout(x)
|
||||
|
||||
|
||||
class DataEmbedding_wo_pos(nn.Module):
|
||||
def __init__(self, c_in, d_model, embed_type='fixed', freq='h', dropout=0.1):
|
||||
super(DataEmbedding_wo_pos, self).__init__()
|
||||
|
||||
self.value_embedding = TokenEmbedding(c_in=c_in, d_model=d_model)
|
||||
self.position_embedding = PositionalEmbedding(d_model=d_model)
|
||||
self.temporal_embedding = TemporalEmbedding(d_model=d_model, embed_type=embed_type,
|
||||
freq=freq) if embed_type != 'timeF' else TimeFeatureEmbedding(
|
||||
d_model=d_model, embed_type=embed_type, freq=freq)
|
||||
self.dropout = nn.Dropout(p=dropout)
|
||||
|
||||
def forward(self, x, x_mark):
|
||||
if x_mark is None:
|
||||
x = self.value_embedding(x)
|
||||
else:
|
||||
x = self.value_embedding(x) + self.temporal_embedding(x_mark)
|
||||
return self.dropout(x)
|
||||
|
||||
|
||||
class PatchEmbedding(nn.Module):
|
||||
def __init__(self, d_model, patch_len, stride, padding, dropout):
|
||||
super(PatchEmbedding, self).__init__()
|
||||
# Patching
|
||||
self.patch_len = patch_len
|
||||
self.stride = stride
|
||||
self.padding_patch_layer = nn.ReplicationPad1d((0, padding))
|
||||
|
||||
# Backbone, Input encoding: projection of feature vectors onto a d-dim vector space
|
||||
self.value_embedding = nn.Linear(patch_len, d_model, bias=False)
|
||||
|
||||
# Positional embedding
|
||||
self.position_embedding = PositionalEmbedding(d_model)
|
||||
|
||||
# Residual dropout
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
def forward(self, x):
|
||||
# do patching
|
||||
n_vars = x.shape[1]
|
||||
x = self.padding_patch_layer(x)
|
||||
x = x.unfold(dimension=-1, size=self.patch_len, step=self.stride)
|
||||
x = torch.reshape(x, (x.shape[0] * x.shape[1], x.shape[2], x.shape[3]))
|
||||
# Input encoding
|
||||
x = self.value_embedding(x) + self.position_embedding(x)
|
||||
return self.dropout(x), n_vars
|
21
layers/decomp.py
Normal file
21
layers/decomp.py
Normal file
@ -0,0 +1,21 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from layers.ema import EMA
|
||||
from layers.dema import DEMA
|
||||
|
||||
class DECOMP(nn.Module):
|
||||
"""
|
||||
Series decomposition block
|
||||
"""
|
||||
def __init__(self, ma_type, alpha, beta):
|
||||
super(DECOMP, self).__init__()
|
||||
if ma_type == 'ema':
|
||||
self.ma = EMA(alpha)
|
||||
elif ma_type == 'dema':
|
||||
self.ma = DEMA(alpha, beta)
|
||||
|
||||
def forward(self, x):
|
||||
moving_average = self.ma(x)
|
||||
res = x - moving_average
|
||||
return res, moving_average
|
27
layers/dema.py
Normal file
27
layers/dema.py
Normal file
@ -0,0 +1,27 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
class DEMA(nn.Module):
|
||||
"""
|
||||
Double Exponential Moving Average (DEMA) block to highlight the trend of time series
|
||||
"""
|
||||
def __init__(self, alpha, beta):
|
||||
super(DEMA, self).__init__()
|
||||
# self.alpha = nn.Parameter(alpha) # Learnable alpha
|
||||
# self.beta = nn.Parameter(beta) # Learnable beta
|
||||
self.alpha = alpha.to(device='cuda')
|
||||
self.beta = beta.to(device='cuda')
|
||||
|
||||
def forward(self, x):
|
||||
# self.alpha.data.clamp_(0, 1) # Clamp learnable alpha to [0, 1]
|
||||
# self.beta.data.clamp_(0, 1) # Clamp learnable beta to [0, 1]
|
||||
s_prev = x[:, 0, :]
|
||||
b = x[:, 1, :] - s_prev
|
||||
res = [s_prev.unsqueeze(1)]
|
||||
for t in range(1, x.shape[1]):
|
||||
xt = x[:, t, :]
|
||||
s = self.alpha * xt + (1 - self.alpha) * (s_prev + b)
|
||||
b = self.beta * (s - s_prev) + (1 - self.beta) * b
|
||||
s_prev = s
|
||||
res.append(s.unsqueeze(1))
|
||||
return torch.cat(res, dim=1)
|
37
layers/ema.py
Normal file
37
layers/ema.py
Normal file
@ -0,0 +1,37 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
class EMA(nn.Module):
|
||||
"""
|
||||
Exponential Moving Average (EMA) block to highlight the trend of time series
|
||||
"""
|
||||
def __init__(self, alpha):
|
||||
super(EMA, self).__init__()
|
||||
# self.alpha = nn.Parameter(alpha) # Learnable alpha
|
||||
self.alpha = alpha
|
||||
|
||||
# Optimized implementation with O(1) time complexity
|
||||
def forward(self, x):
|
||||
# x: [Batch, Input, Channel]
|
||||
# self.alpha.data.clamp_(0, 1) # Clamp learnable alpha to [0, 1]
|
||||
_, t, _ = x.shape
|
||||
powers = torch.flip(torch.arange(t, dtype=torch.double), dims=(0,))
|
||||
weights = torch.pow((1 - self.alpha), powers).to('cuda')
|
||||
divisor = weights.clone()
|
||||
weights[1:] = weights[1:] * self.alpha
|
||||
weights = weights.reshape(1, t, 1)
|
||||
divisor = divisor.reshape(1, t, 1)
|
||||
x = torch.cumsum(x * weights, dim=1)
|
||||
x = torch.div(x, divisor)
|
||||
return x.to(torch.float32)
|
||||
|
||||
# # Naive implementation with O(n) time complexity
|
||||
# def forward(self, x):
|
||||
# # self.alpha.data.clamp_(0, 1) # Clamp learnable alpha to [0, 1]
|
||||
# s = x[:, 0, :]
|
||||
# res = [s.unsqueeze(1)]
|
||||
# for t in range(1, x.shape[1]):
|
||||
# xt = x[:, t, :]
|
||||
# s = self.alpha * xt + (1 - self.alpha) * s
|
||||
# res.append(s.unsqueeze(1))
|
||||
# return torch.cat(res, dim=1)
|
61
layers/revin.py
Normal file
61
layers/revin.py
Normal file
@ -0,0 +1,61 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
class RevIN(nn.Module):
|
||||
def __init__(self, num_features: int, eps=1e-5, affine=True, subtract_last=False):
|
||||
"""
|
||||
:param num_features: the number of features or channels
|
||||
:param eps: a value added for numerical stability
|
||||
:param affine: if True, RevIN has learnable affine parameters
|
||||
"""
|
||||
super(RevIN, self).__init__()
|
||||
self.num_features = num_features
|
||||
self.eps = eps
|
||||
self.affine = affine
|
||||
self.subtract_last = subtract_last
|
||||
if self.affine:
|
||||
self._init_params()
|
||||
|
||||
def forward(self, x, mode:str):
|
||||
if mode == 'norm':
|
||||
self._get_statistics(x)
|
||||
x = self._normalize(x)
|
||||
elif mode == 'denorm':
|
||||
x = self._denormalize(x)
|
||||
else: raise NotImplementedError
|
||||
return x
|
||||
|
||||
def _init_params(self):
|
||||
# initialize RevIN params: (C,)
|
||||
self.affine_weight = nn.Parameter(torch.ones(self.num_features))
|
||||
self.affine_bias = nn.Parameter(torch.zeros(self.num_features))
|
||||
|
||||
def _get_statistics(self, x):
|
||||
dim2reduce = tuple(range(1, x.ndim-1))
|
||||
if self.subtract_last:
|
||||
self.last = x[:,-1,:].unsqueeze(1)
|
||||
else:
|
||||
self.mean = torch.mean(x, dim=dim2reduce, keepdim=True).detach()
|
||||
self.stdev = torch.sqrt(torch.var(x, dim=dim2reduce, keepdim=True, unbiased=False) + self.eps).detach()
|
||||
|
||||
def _normalize(self, x):
|
||||
if self.subtract_last:
|
||||
x = x - self.last
|
||||
else:
|
||||
x = x - self.mean
|
||||
x = x / self.stdev
|
||||
if self.affine:
|
||||
x = x * self.affine_weight
|
||||
x = x + self.affine_bias
|
||||
return x
|
||||
|
||||
def _denormalize(self, x):
|
||||
if self.affine:
|
||||
x = x - self.affine_bias
|
||||
x = x / (self.affine_weight + self.eps*self.eps)
|
||||
x = x * self.stdev
|
||||
if self.subtract_last:
|
||||
x = x + self.last
|
||||
else:
|
||||
x =x + self.mean
|
||||
return x
|
30
layers/telu.py
Normal file
30
layers/telu.py
Normal file
@ -0,0 +1,30 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
class TeLU(nn.Module):
|
||||
"""
|
||||
实现论文中提出的 TeLU 激活函数。
|
||||
论文: TeLU Activation Function for Fast and Stable Deep Learning
|
||||
公式: TeLU(x) = x * tanh(e^x)
|
||||
"""
|
||||
def __init__(self):
|
||||
"""
|
||||
TeLU 激活函数没有可学习的参数,所以 __init__ 方法很简单。
|
||||
"""
|
||||
super(TeLU, self).__init__()
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
前向传播的计算逻辑。
|
||||
"""
|
||||
# 直接应用公式
|
||||
return x * torch.tanh(torch.exp(x))
|
||||
|
||||
def __repr__(self):
|
||||
"""
|
||||
(可选但推荐) 定义一个好的字符串表示,方便打印模型结构。
|
||||
"""
|
||||
return f"{self.__class__.__name__}()"
|
||||
|
||||
|
@ -3,8 +3,8 @@ import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import numpy as np
|
||||
from RevIN import RevIN
|
||||
from Trans_EncDec import Encoder_ori, LinearEncoder
|
||||
from ..RevIN import RevIN
|
||||
from .Trans_EncDec import Encoder_ori, LinearEncoder
|
||||
|
||||
|
||||
|
||||
|
@ -1 +1 @@
|
||||
from model import *
|
||||
from .model import *
|
||||
|
203
models/TimeMixer++/Autoformer_EncDec.py
Normal file
203
models/TimeMixer++/Autoformer_EncDec.py
Normal file
@ -0,0 +1,203 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
class my_Layernorm(nn.Module):
|
||||
"""
|
||||
Special designed layernorm for the seasonal part
|
||||
"""
|
||||
|
||||
def __init__(self, channels):
|
||||
super(my_Layernorm, self).__init__()
|
||||
self.layernorm = nn.LayerNorm(channels)
|
||||
|
||||
def forward(self, x):
|
||||
x_hat = self.layernorm(x)
|
||||
bias = torch.mean(x_hat, dim=1).unsqueeze(1).repeat(1, x.shape[1], 1)
|
||||
return x_hat - bias
|
||||
|
||||
|
||||
class moving_avg(nn.Module):
|
||||
"""
|
||||
Moving average block to highlight the trend of time series
|
||||
"""
|
||||
|
||||
def __init__(self, kernel_size, stride):
|
||||
super(moving_avg, self).__init__()
|
||||
self.kernel_size = kernel_size
|
||||
self.avg = nn.AvgPool1d(kernel_size=kernel_size, stride=stride, padding=0)
|
||||
|
||||
def forward(self, x):
|
||||
# padding on the both ends of time series
|
||||
front = x[:, 0:1, :].repeat(1, (self.kernel_size - 1) // 2, 1)
|
||||
end = x[:, -1:, :].repeat(1, (self.kernel_size - 1) // 2, 1)
|
||||
x = torch.cat([front, x, end], dim=1)
|
||||
x = self.avg(x.permute(0, 2, 1))
|
||||
x = x.permute(0, 2, 1)
|
||||
return x
|
||||
|
||||
|
||||
class series_decomp(nn.Module):
|
||||
"""
|
||||
Series decomposition block
|
||||
"""
|
||||
|
||||
def __init__(self, kernel_size):
|
||||
super(series_decomp, self).__init__()
|
||||
self.moving_avg = moving_avg(kernel_size, stride=1)
|
||||
|
||||
def forward(self, x):
|
||||
moving_mean = self.moving_avg(x)
|
||||
res = x - moving_mean
|
||||
return res, moving_mean
|
||||
|
||||
|
||||
class series_decomp_multi(nn.Module):
|
||||
"""
|
||||
Multiple Series decomposition block from FEDformer
|
||||
"""
|
||||
|
||||
def __init__(self, kernel_size):
|
||||
super(series_decomp_multi, self).__init__()
|
||||
self.kernel_size = kernel_size
|
||||
self.series_decomp = [series_decomp(kernel) for kernel in kernel_size]
|
||||
|
||||
def forward(self, x):
|
||||
moving_mean = []
|
||||
res = []
|
||||
for func in self.series_decomp:
|
||||
sea, moving_avg = func(x)
|
||||
moving_mean.append(moving_avg)
|
||||
res.append(sea)
|
||||
|
||||
sea = sum(res) / len(res)
|
||||
moving_mean = sum(moving_mean) / len(moving_mean)
|
||||
return sea, moving_mean
|
||||
|
||||
|
||||
class EncoderLayer(nn.Module):
|
||||
"""
|
||||
Autoformer encoder layer with the progressive decomposition architecture
|
||||
"""
|
||||
|
||||
def __init__(self, attention, d_model, d_ff=None, moving_avg=25, dropout=0.1, activation="relu"):
|
||||
super(EncoderLayer, self).__init__()
|
||||
d_ff = d_ff or 4 * d_model
|
||||
self.attention = attention
|
||||
self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1, bias=False)
|
||||
self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1, bias=False)
|
||||
self.decomp1 = series_decomp(moving_avg)
|
||||
self.decomp2 = series_decomp(moving_avg)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.activation = F.relu if activation == "relu" else F.gelu
|
||||
|
||||
def forward(self, x, attn_mask=None):
|
||||
new_x, attn = self.attention(
|
||||
x, x, x,
|
||||
attn_mask=attn_mask
|
||||
)
|
||||
x = x + self.dropout(new_x)
|
||||
x, _ = self.decomp1(x)
|
||||
y = x
|
||||
y = self.dropout(self.activation(self.conv1(y.transpose(-1, 1))))
|
||||
y = self.dropout(self.conv2(y).transpose(-1, 1))
|
||||
res, _ = self.decomp2(x + y)
|
||||
return res, attn
|
||||
|
||||
|
||||
class Encoder(nn.Module):
|
||||
"""
|
||||
Autoformer encoder
|
||||
"""
|
||||
|
||||
def __init__(self, attn_layers, conv_layers=None, norm_layer=None):
|
||||
super(Encoder, self).__init__()
|
||||
self.attn_layers = nn.ModuleList(attn_layers)
|
||||
self.conv_layers = nn.ModuleList(conv_layers) if conv_layers is not None else None
|
||||
self.norm = norm_layer
|
||||
|
||||
def forward(self, x, attn_mask=None):
|
||||
attns = []
|
||||
if self.conv_layers is not None:
|
||||
for attn_layer, conv_layer in zip(self.attn_layers, self.conv_layers):
|
||||
x, attn = attn_layer(x, attn_mask=attn_mask)
|
||||
x = conv_layer(x)
|
||||
attns.append(attn)
|
||||
x, attn = self.attn_layers[-1](x)
|
||||
attns.append(attn)
|
||||
else:
|
||||
for attn_layer in self.attn_layers:
|
||||
x, attn = attn_layer(x, attn_mask=attn_mask)
|
||||
attns.append(attn)
|
||||
|
||||
if self.norm is not None:
|
||||
x = self.norm(x)
|
||||
|
||||
return x, attns
|
||||
|
||||
|
||||
class DecoderLayer(nn.Module):
|
||||
"""
|
||||
Autoformer decoder layer with the progressive decomposition architecture
|
||||
"""
|
||||
|
||||
def __init__(self, self_attention, cross_attention, d_model, c_out, d_ff=None,
|
||||
moving_avg=25, dropout=0.1, activation="relu"):
|
||||
super(DecoderLayer, self).__init__()
|
||||
d_ff = d_ff or 4 * d_model
|
||||
self.self_attention = self_attention
|
||||
self.cross_attention = cross_attention
|
||||
self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1, bias=False)
|
||||
self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1, bias=False)
|
||||
self.decomp1 = series_decomp(moving_avg)
|
||||
self.decomp2 = series_decomp(moving_avg)
|
||||
self.decomp3 = series_decomp(moving_avg)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.projection = nn.Conv1d(in_channels=d_model, out_channels=c_out, kernel_size=3, stride=1, padding=1,
|
||||
padding_mode='circular', bias=False)
|
||||
self.activation = F.relu if activation == "relu" else F.gelu
|
||||
|
||||
def forward(self, x, cross, x_mask=None, cross_mask=None):
|
||||
x = x + self.dropout(self.self_attention(
|
||||
x, x, x,
|
||||
attn_mask=x_mask
|
||||
)[0])
|
||||
x, trend1 = self.decomp1(x)
|
||||
x = x + self.dropout(self.cross_attention(
|
||||
x, cross, cross,
|
||||
attn_mask=cross_mask
|
||||
)[0])
|
||||
x, trend2 = self.decomp2(x)
|
||||
y = x
|
||||
y = self.dropout(self.activation(self.conv1(y.transpose(-1, 1))))
|
||||
y = self.dropout(self.conv2(y).transpose(-1, 1))
|
||||
x, trend3 = self.decomp3(x + y)
|
||||
|
||||
residual_trend = trend1 + trend2 + trend3
|
||||
residual_trend = self.projection(residual_trend.permute(0, 2, 1)).transpose(1, 2)
|
||||
return x, residual_trend
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
"""
|
||||
Autoformer encoder
|
||||
"""
|
||||
|
||||
def __init__(self, layers, norm_layer=None, projection=None):
|
||||
super(Decoder, self).__init__()
|
||||
self.layers = nn.ModuleList(layers)
|
||||
self.norm = norm_layer
|
||||
self.projection = projection
|
||||
|
||||
def forward(self, x, cross, x_mask=None, cross_mask=None, trend=None):
|
||||
for layer in self.layers:
|
||||
x, residual_trend = layer(x, cross, x_mask=x_mask, cross_mask=cross_mask)
|
||||
trend = trend + residual_trend
|
||||
|
||||
if self.norm is not None:
|
||||
x = self.norm(x)
|
||||
|
||||
if self.projection is not None:
|
||||
x = self.projection(x)
|
||||
return x, trend
|
234
models/TimeMixer++/Embed.py
Normal file
234
models/TimeMixer++/Embed.py
Normal file
@ -0,0 +1,234 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.nn.utils import weight_norm
|
||||
import math
|
||||
|
||||
|
||||
class PositionalEmbedding(nn.Module):
|
||||
def __init__(self, d_model, max_len=5000):
|
||||
super(PositionalEmbedding, self).__init__()
|
||||
# Compute the positional encodings once in log space.
|
||||
pe = torch.zeros(max_len, d_model).float()
|
||||
pe.require_grad = False
|
||||
|
||||
position = torch.arange(0, max_len).float().unsqueeze(1)
|
||||
div_term = (torch.arange(0, d_model, 2).float()
|
||||
* -(math.log(10000.0) / d_model)).exp()
|
||||
|
||||
pe[:, 0::2] = torch.sin(position * div_term)
|
||||
pe[:, 1::2] = torch.cos(position * div_term)
|
||||
|
||||
pe = pe.unsqueeze(0)
|
||||
self.register_buffer('pe', pe)
|
||||
|
||||
def forward(self, x):
|
||||
return self.pe[:, :x.size(1)]
|
||||
|
||||
|
||||
class TokenEmbedding(nn.Module):
|
||||
def __init__(self, c_in, d_model):
|
||||
super(TokenEmbedding, self).__init__()
|
||||
padding = 1 if torch.__version__ >= '1.5.0' else 2
|
||||
self.tokenConv = nn.Conv1d(in_channels=c_in, out_channels=d_model,
|
||||
kernel_size=3, padding=padding, padding_mode='circular', bias=False)
|
||||
for m in self.modules():
|
||||
if isinstance(m, nn.Conv1d):
|
||||
nn.init.kaiming_normal_(
|
||||
m.weight, mode='fan_in', nonlinearity='leaky_relu')
|
||||
|
||||
def forward(self, x):
|
||||
x = self.tokenConv(x.permute(0, 2, 1)).transpose(1, 2)
|
||||
return x
|
||||
|
||||
|
||||
class FixedEmbedding(nn.Module):
|
||||
def __init__(self, c_in, d_model):
|
||||
super(FixedEmbedding, self).__init__()
|
||||
|
||||
w = torch.zeros(c_in, d_model).float()
|
||||
w.require_grad = False
|
||||
|
||||
position = torch.arange(0, c_in).float().unsqueeze(1)
|
||||
div_term = (torch.arange(0, d_model, 2).float()
|
||||
* -(math.log(10000.0) / d_model)).exp()
|
||||
|
||||
w[:, 0::2] = torch.sin(position * div_term)
|
||||
w[:, 1::2] = torch.cos(position * div_term)
|
||||
|
||||
self.emb = nn.Embedding(c_in, d_model)
|
||||
self.emb.weight = nn.Parameter(w, requires_grad=False)
|
||||
|
||||
def forward(self, x):
|
||||
return self.emb(x).detach()
|
||||
|
||||
|
||||
class TemporalEmbedding(nn.Module):
|
||||
def __init__(self, d_model, embed_type='fixed', freq='h'):
|
||||
super(TemporalEmbedding, self).__init__()
|
||||
|
||||
minute_size = 4
|
||||
hour_size = 24
|
||||
weekday_size = 7
|
||||
day_size = 32
|
||||
month_size = 13
|
||||
|
||||
Embed = FixedEmbedding if embed_type == 'fixed' else nn.Embedding
|
||||
if freq == 't':
|
||||
self.minute_embed = Embed(minute_size, d_model)
|
||||
self.hour_embed = Embed(hour_size, d_model)
|
||||
self.weekday_embed = Embed(weekday_size, d_model)
|
||||
self.day_embed = Embed(day_size, d_model)
|
||||
self.month_embed = Embed(month_size, d_model)
|
||||
|
||||
def forward(self, x):
|
||||
x = x.long()
|
||||
minute_x = self.minute_embed(x[:, :, 4]) if hasattr(
|
||||
self, 'minute_embed') else 0.
|
||||
hour_x = self.hour_embed(x[:, :, 3])
|
||||
weekday_x = self.weekday_embed(x[:, :, 2])
|
||||
day_x = self.day_embed(x[:, :, 1])
|
||||
month_x = self.month_embed(x[:, :, 0])
|
||||
|
||||
return hour_x + weekday_x + day_x + month_x + minute_x
|
||||
|
||||
|
||||
class TimeFeatureEmbedding(nn.Module):
|
||||
def __init__(self, d_model, embed_type='timeF', freq='h'):
|
||||
super(TimeFeatureEmbedding, self).__init__()
|
||||
|
||||
freq_map = {'h': 4, 't': 5, 's': 6, 'ms': 7,
|
||||
'm': 1, 'a': 1, 'w': 2, 'd': 3, 'b': 3}
|
||||
d_inp = freq_map[freq]
|
||||
self.embed = nn.Linear(d_inp, d_model, bias=False)
|
||||
|
||||
def forward(self, x):
|
||||
return self.embed(x)
|
||||
|
||||
|
||||
class DataEmbedding(nn.Module):
|
||||
def __init__(self, c_in, d_model, embed_type='fixed', freq='h', dropout=0.1):
|
||||
super(DataEmbedding, self).__init__()
|
||||
self.c_in = c_in
|
||||
self.d_model = d_model
|
||||
self.value_embedding = TokenEmbedding(c_in=c_in, d_model=d_model)
|
||||
self.position_embedding = PositionalEmbedding(d_model=d_model)
|
||||
self.temporal_embedding = TemporalEmbedding(d_model=d_model, embed_type=embed_type,
|
||||
freq=freq) if embed_type != 'timeF' else TimeFeatureEmbedding(
|
||||
d_model=d_model, embed_type=embed_type, freq=freq)
|
||||
self.dropout = nn.Dropout(p=dropout)
|
||||
|
||||
def forward(self, x, x_mark):
|
||||
_, _, N = x.size()
|
||||
if N == self.c_in:
|
||||
if x_mark is None:
|
||||
x = self.value_embedding(x) + self.position_embedding(x)
|
||||
else:
|
||||
x = self.value_embedding(
|
||||
x) + self.temporal_embedding(x_mark) + self.position_embedding(x)
|
||||
elif N == self.d_model:
|
||||
if x_mark is None:
|
||||
x = x + self.position_embedding(x)
|
||||
else:
|
||||
x = x + self.temporal_embedding(x_mark) + self.position_embedding(x)
|
||||
|
||||
return self.dropout(x)
|
||||
|
||||
|
||||
class DataEmbedding_ms(nn.Module):
|
||||
def __init__(self, c_in, d_model, embed_type='fixed', freq='h', dropout=0.1):
|
||||
super(DataEmbedding_ms, self).__init__()
|
||||
|
||||
self.value_embedding = TokenEmbedding(c_in=1, d_model=d_model)
|
||||
self.position_embedding = PositionalEmbedding(d_model=d_model)
|
||||
self.temporal_embedding = TemporalEmbedding(d_model=d_model, embed_type=embed_type,
|
||||
freq=freq) if embed_type != 'timeF' else TimeFeatureEmbedding(
|
||||
d_model=d_model, embed_type=embed_type, freq=freq)
|
||||
self.dropout = nn.Dropout(p=dropout)
|
||||
|
||||
def forward(self, x, x_mark):
|
||||
B, T, N = x.shape
|
||||
x1 = self.value_embedding(x.reshape(0, 2, 1).reshape(B * N, T).unsqueeze(-1)).reshape(B, N, T, -1).permute(0, 2,
|
||||
1, 3)
|
||||
if x_mark is None:
|
||||
x = x1
|
||||
else:
|
||||
x = x1 + self.temporal_embedding(x_mark)
|
||||
return self.dropout(x)
|
||||
|
||||
|
||||
class DataEmbedding_wo_pos(nn.Module):
|
||||
def __init__(self, c_in, d_model, embed_type='fixed', freq='h', dropout=0.1):
|
||||
super(DataEmbedding_wo_pos, self).__init__()
|
||||
|
||||
self.value_embedding = TokenEmbedding(c_in=c_in, d_model=d_model)
|
||||
self.position_embedding = PositionalEmbedding(d_model=d_model)
|
||||
self.temporal_embedding = TemporalEmbedding(d_model=d_model, embed_type=embed_type,
|
||||
freq=freq) if embed_type != 'timeF' else TimeFeatureEmbedding(
|
||||
d_model=d_model, embed_type=embed_type, freq=freq)
|
||||
self.dropout = nn.Dropout(p=dropout)
|
||||
|
||||
def forward(self, x, x_mark):
|
||||
if x is None and x_mark is not None:
|
||||
return self.temporal_embedding(x_mark)
|
||||
if x_mark is None:
|
||||
x = self.value_embedding(x)
|
||||
else:
|
||||
x = self.value_embedding(x) + self.temporal_embedding(x_mark)
|
||||
return self.dropout(x)
|
||||
|
||||
|
||||
class PatchEmbedding_crossformer(nn.Module):
|
||||
def __init__(self, d_model, patch_len, stride, padding, dropout):
|
||||
super(PatchEmbedding_crossformer, self).__init__()
|
||||
# Patching
|
||||
self.patch_len = patch_len
|
||||
self.stride = stride
|
||||
self.padding_patch_layer = nn.ReplicationPad1d((0, padding))
|
||||
|
||||
# Backbone, Input encoding: projection of feature vectors onto a d-dim vector space
|
||||
self.value_embedding = nn.Linear(patch_len, d_model, bias=False)
|
||||
|
||||
# Positional embedding
|
||||
self.position_embedding = PositionalEmbedding(d_model)
|
||||
|
||||
# Residual dropout
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
def forward(self, x):
|
||||
# do patching
|
||||
n_vars = x.shape[1]
|
||||
x = self.padding_patch_layer(x)
|
||||
x = x.unfold(dimension=-1, size=self.patch_len, step=self.stride)
|
||||
x = torch.reshape(x, (x.shape[0] * x.shape[1], x.shape[2], x.shape[3]))
|
||||
# Input encoding
|
||||
x = self.value_embedding(x) + self.position_embedding(x)
|
||||
return self.dropout(x), n_vars
|
||||
|
||||
|
||||
class PatchEmbedding(nn.Module):
|
||||
def __init__(self, d_model, patch_len, stride, dropout):
|
||||
super(PatchEmbedding, self).__init__()
|
||||
# Patching
|
||||
self.patch_len = patch_len
|
||||
self.stride = stride
|
||||
self.padding_patch_layer = nn.ReplicationPad1d((0, stride))
|
||||
|
||||
# Backbone, Input encoding: projection of feature vectors onto a d-dim vector space
|
||||
self.value_embedding = TokenEmbedding(patch_len, d_model)
|
||||
|
||||
# Positional embedding
|
||||
self.position_embedding = PositionalEmbedding(d_model)
|
||||
|
||||
# Residual dropout
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
def forward(self, x):
|
||||
# do patching
|
||||
n_vars = x.shape[1]
|
||||
x = self.padding_patch_layer(x)
|
||||
x = x.unfold(dimension=-1, size=self.patch_len, step=self.stride)
|
||||
x = torch.reshape(x, (x.shape[0] * x.shape[1], x.shape[2], x.shape[3]))
|
||||
# Input encoding
|
||||
x = self.value_embedding(x) + self.position_embedding(x)
|
||||
return self.dropout(x), n_vars
|
67
models/TimeMixer++/StandardNorm.py
Normal file
67
models/TimeMixer++/StandardNorm.py
Normal file
@ -0,0 +1,67 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
class Normalize(nn.Module):
|
||||
def __init__(self, num_features: int, eps=1e-5, affine=False, subtract_last=False, non_norm=False):
|
||||
"""
|
||||
:param num_features: the number of features or channels
|
||||
:param eps: a value added for numerical stability
|
||||
:param affine: if True, RevIN has learnable affine parameters
|
||||
"""
|
||||
super(Normalize, self).__init__()
|
||||
self.num_features = num_features
|
||||
self.eps = eps
|
||||
self.affine = affine
|
||||
self.subtract_last = subtract_last
|
||||
self.non_norm = non_norm
|
||||
if self.affine:
|
||||
self._init_params()
|
||||
|
||||
def forward(self, x, mode: str):
|
||||
if mode == 'norm':
|
||||
self._get_statistics(x)
|
||||
x = self._normalize(x)
|
||||
elif mode == 'denorm':
|
||||
x = self._denormalize(x)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
return x
|
||||
|
||||
def _init_params(self):
|
||||
# initialize RevIN params: (C,)
|
||||
self.affine_weight = nn.Parameter(torch.ones(self.num_features))
|
||||
self.affine_bias = nn.Parameter(torch.zeros(self.num_features))
|
||||
|
||||
def _get_statistics(self, x):
|
||||
dim2reduce = tuple(range(1, x.ndim - 1))
|
||||
if self.subtract_last:
|
||||
self.last = x[:, -1, :].unsqueeze(1)
|
||||
else:
|
||||
self.mean = torch.mean(x, dim=dim2reduce, keepdim=True).detach()
|
||||
self.stdev = torch.sqrt(torch.var(x, dim=dim2reduce, keepdim=True, unbiased=False) + self.eps).detach()
|
||||
|
||||
def _normalize(self, x):
|
||||
if self.non_norm:
|
||||
return x
|
||||
if self.subtract_last:
|
||||
x = x - self.last
|
||||
else:
|
||||
x = x - self.mean
|
||||
x = x / self.stdev
|
||||
if self.affine:
|
||||
x = x * self.affine_weight
|
||||
x = x + self.affine_bias
|
||||
return x
|
||||
|
||||
def _denormalize(self, x):
|
||||
if self.non_norm:
|
||||
return x
|
||||
if self.affine:
|
||||
x = x - self.affine_bias
|
||||
x = x / (self.affine_weight + self.eps * self.eps)
|
||||
x = x * self.stdev
|
||||
if self.subtract_last:
|
||||
x = x + self.last
|
||||
else:
|
||||
x = x + self.mean
|
||||
return x
|
527
models/TimeMixer++/TimeMixer.py
Normal file
527
models/TimeMixer++/TimeMixer.py
Normal file
@ -0,0 +1,527 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from layers.Autoformer_EncDec import series_decomp
|
||||
from layers.Embed import DataEmbedding_wo_pos
|
||||
from layers.StandardNorm import Normalize
|
||||
|
||||
class DFT_series_decomp(nn.Module):
|
||||
"""
|
||||
Series decomposition block
|
||||
"""
|
||||
|
||||
def __init__(self, top_k=5):
|
||||
super(DFT_series_decomp, self).__init__()
|
||||
self.top_k = top_k
|
||||
|
||||
def forward(self, x):
|
||||
xf = torch.fft.rfft(x)
|
||||
freq = abs(xf)
|
||||
freq[0] = 0
|
||||
top_k_freq, top_list = torch.topk(freq, self.top_k)
|
||||
xf[freq <= top_k_freq.min()] = 0
|
||||
x_season = torch.fft.irfft(xf)
|
||||
x_trend = x - x_season
|
||||
return x_season, x_trend
|
||||
|
||||
|
||||
class MultiScaleSeasonMixing(nn.Module):
|
||||
"""
|
||||
Bottom-up mixing season pattern
|
||||
"""
|
||||
|
||||
def __init__(self, configs):
|
||||
super(MultiScaleSeasonMixing, self).__init__()
|
||||
|
||||
self.down_sampling_layers = torch.nn.ModuleList(
|
||||
[
|
||||
nn.Sequential(
|
||||
torch.nn.Linear(
|
||||
configs.seq_len // (configs.down_sampling_window ** i),
|
||||
configs.seq_len // (configs.down_sampling_window ** (i + 1)),
|
||||
),
|
||||
nn.GELU(),
|
||||
torch.nn.Linear(
|
||||
configs.seq_len // (configs.down_sampling_window ** (i + 1)),
|
||||
configs.seq_len // (configs.down_sampling_window ** (i + 1)),
|
||||
),
|
||||
|
||||
)
|
||||
for i in range(configs.down_sampling_layers)
|
||||
]
|
||||
)
|
||||
|
||||
def forward(self, season_list):
|
||||
|
||||
# mixing high->low
|
||||
out_high = season_list[0]
|
||||
out_low = season_list[1]
|
||||
out_season_list = [out_high.permute(0, 2, 1)]
|
||||
|
||||
for i in range(len(season_list) - 1):
|
||||
out_low_res = self.down_sampling_layers[i](out_high)
|
||||
out_low = out_low + out_low_res
|
||||
out_high = out_low
|
||||
if i + 2 <= len(season_list) - 1:
|
||||
out_low = season_list[i + 2]
|
||||
out_season_list.append(out_high.permute(0, 2, 1))
|
||||
|
||||
return out_season_list
|
||||
|
||||
|
||||
class MultiScaleTrendMixing(nn.Module):
|
||||
"""
|
||||
Top-down mixing trend pattern
|
||||
"""
|
||||
|
||||
def __init__(self, configs):
|
||||
super(MultiScaleTrendMixing, self).__init__()
|
||||
|
||||
self.up_sampling_layers = torch.nn.ModuleList(
|
||||
[
|
||||
nn.Sequential(
|
||||
torch.nn.Linear(
|
||||
configs.seq_len // (configs.down_sampling_window ** (i + 1)),
|
||||
configs.seq_len // (configs.down_sampling_window ** i),
|
||||
),
|
||||
nn.GELU(),
|
||||
torch.nn.Linear(
|
||||
configs.seq_len // (configs.down_sampling_window ** i),
|
||||
configs.seq_len // (configs.down_sampling_window ** i),
|
||||
),
|
||||
)
|
||||
for i in reversed(range(configs.down_sampling_layers))
|
||||
])
|
||||
|
||||
def forward(self, trend_list):
|
||||
|
||||
# mixing low->high
|
||||
trend_list_reverse = trend_list.copy()
|
||||
trend_list_reverse.reverse()
|
||||
out_low = trend_list_reverse[0]
|
||||
out_high = trend_list_reverse[1]
|
||||
out_trend_list = [out_low.permute(0, 2, 1)]
|
||||
|
||||
for i in range(len(trend_list_reverse) - 1):
|
||||
out_high_res = self.up_sampling_layers[i](out_low)
|
||||
out_high = out_high + out_high_res
|
||||
out_low = out_high
|
||||
if i + 2 <= len(trend_list_reverse) - 1:
|
||||
out_high = trend_list_reverse[i + 2]
|
||||
out_trend_list.append(out_low.permute(0, 2, 1))
|
||||
|
||||
out_trend_list.reverse()
|
||||
return out_trend_list
|
||||
|
||||
|
||||
class PastDecomposableMixing(nn.Module):
|
||||
def __init__(self, configs):
|
||||
super(PastDecomposableMixing, self).__init__()
|
||||
self.seq_len = configs.seq_len
|
||||
self.pred_len = configs.pred_len
|
||||
self.down_sampling_window = configs.down_sampling_window
|
||||
|
||||
self.layer_norm = nn.LayerNorm(configs.d_model)
|
||||
self.dropout = nn.Dropout(configs.dropout)
|
||||
self.channel_independence = configs.channel_independence
|
||||
|
||||
if configs.decomp_method == 'moving_avg':
|
||||
self.decompsition = series_decomp(configs.moving_avg)
|
||||
elif configs.decomp_method == "dft_decomp":
|
||||
self.decompsition = DFT_series_decomp(configs.top_k)
|
||||
else:
|
||||
raise ValueError('decompsition is error')
|
||||
|
||||
if configs.channel_independence == 0:
|
||||
self.cross_layer = nn.Sequential(
|
||||
nn.Linear(in_features=configs.d_model, out_features=configs.d_ff),
|
||||
nn.GELU(),
|
||||
nn.Linear(in_features=configs.d_ff, out_features=configs.d_model),
|
||||
)
|
||||
|
||||
# Mixing season
|
||||
self.mixing_multi_scale_season = MultiScaleSeasonMixing(configs)
|
||||
|
||||
# Mxing trend
|
||||
self.mixing_multi_scale_trend = MultiScaleTrendMixing(configs)
|
||||
|
||||
self.out_cross_layer = nn.Sequential(
|
||||
nn.Linear(in_features=configs.d_model, out_features=configs.d_ff),
|
||||
nn.GELU(),
|
||||
nn.Linear(in_features=configs.d_ff, out_features=configs.d_model),
|
||||
)
|
||||
|
||||
def forward(self, x_list):
|
||||
length_list = []
|
||||
for x in x_list:
|
||||
_, T, _ = x.size()
|
||||
length_list.append(T)
|
||||
|
||||
# Decompose to obtain the season and trend
|
||||
season_list = []
|
||||
trend_list = []
|
||||
for x in x_list:
|
||||
season, trend = self.decompsition(x)
|
||||
if self.channel_independence == 0:
|
||||
season = self.cross_layer(season)
|
||||
trend = self.cross_layer(trend)
|
||||
season_list.append(season.permute(0, 2, 1))
|
||||
trend_list.append(trend.permute(0, 2, 1))
|
||||
|
||||
# bottom-up season mixing
|
||||
out_season_list = self.mixing_multi_scale_season(season_list)
|
||||
# top-down trend mixing
|
||||
out_trend_list = self.mixing_multi_scale_trend(trend_list)
|
||||
|
||||
out_list = []
|
||||
for ori, out_season, out_trend, length in zip(x_list, out_season_list, out_trend_list,
|
||||
length_list):
|
||||
out = out_season + out_trend
|
||||
if self.channel_independence:
|
||||
out = ori + self.out_cross_layer(out)
|
||||
out_list.append(out[:, :length, :])
|
||||
return out_list
|
||||
|
||||
|
||||
class TimeMixer(nn.Module):
|
||||
|
||||
def __init__(self, configs):
|
||||
super(TimeMixer, self).__init__()
|
||||
self.configs = configs
|
||||
self.task_name = configs.task_name
|
||||
self.seq_len = configs.seq_len
|
||||
self.label_len = configs.label_len
|
||||
self.pred_len = configs.pred_len
|
||||
self.down_sampling_window = configs.down_sampling_window
|
||||
self.channel_independence = configs.channel_independence
|
||||
self.pdm_blocks = nn.ModuleList([PastDecomposableMixing(configs)
|
||||
for _ in range(configs.e_layers)])
|
||||
|
||||
self.preprocess = series_decomp(configs.moving_avg)
|
||||
self.enc_in = configs.enc_in
|
||||
self.use_future_temporal_feature = configs.use_future_temporal_feature
|
||||
|
||||
if self.channel_independence == 1:
|
||||
self.enc_embedding = DataEmbedding_wo_pos(1, configs.d_model, configs.embed, configs.freq,
|
||||
configs.dropout)
|
||||
else:
|
||||
self.enc_embedding = DataEmbedding_wo_pos(configs.enc_in, configs.d_model, configs.embed, configs.freq,
|
||||
configs.dropout)
|
||||
|
||||
self.layer = configs.e_layers
|
||||
|
||||
self.normalize_layers = torch.nn.ModuleList(
|
||||
[
|
||||
Normalize(self.configs.enc_in, affine=True, non_norm=True if configs.use_norm == 0 else False)
|
||||
for i in range(configs.down_sampling_layers + 1)
|
||||
]
|
||||
)
|
||||
|
||||
if self.task_name == 'long_term_forecast' or self.task_name == 'short_term_forecast':
|
||||
self.predict_layers = torch.nn.ModuleList(
|
||||
[
|
||||
torch.nn.Linear(
|
||||
configs.seq_len // (configs.down_sampling_window ** i),
|
||||
configs.pred_len,
|
||||
)
|
||||
for i in range(configs.down_sampling_layers + 1)
|
||||
]
|
||||
)
|
||||
|
||||
if self.channel_independence == 1:
|
||||
self.projection_layer = nn.Linear(
|
||||
configs.d_model, 1, bias=True)
|
||||
else:
|
||||
self.projection_layer = nn.Linear(
|
||||
configs.d_model, configs.c_out, bias=True)
|
||||
|
||||
self.out_res_layers = torch.nn.ModuleList([
|
||||
torch.nn.Linear(
|
||||
configs.seq_len // (configs.down_sampling_window ** i),
|
||||
configs.seq_len // (configs.down_sampling_window ** i),
|
||||
)
|
||||
for i in range(configs.down_sampling_layers + 1)
|
||||
])
|
||||
|
||||
self.regression_layers = torch.nn.ModuleList(
|
||||
[
|
||||
torch.nn.Linear(
|
||||
configs.seq_len // (configs.down_sampling_window ** i),
|
||||
configs.pred_len,
|
||||
)
|
||||
for i in range(configs.down_sampling_layers + 1)
|
||||
]
|
||||
)
|
||||
if self.task_name == 'imputation' or self.task_name == 'anomaly_detection':
|
||||
if self.channel_independence == 1:
|
||||
self.projection_layer = nn.Linear(
|
||||
configs.d_model, 1, bias=True)
|
||||
else:
|
||||
self.projection_layer = nn.Linear(
|
||||
configs.d_model, configs.c_out, bias=True)
|
||||
if self.task_name == 'classification':
|
||||
self.act = F.gelu
|
||||
self.dropout = nn.Dropout(configs.dropout)
|
||||
self.projection = nn.Linear(
|
||||
configs.d_model * configs.seq_len, configs.num_class)
|
||||
|
||||
def out_projection(self, dec_out, i, out_res):
|
||||
dec_out = self.projection_layer(dec_out)
|
||||
out_res = out_res.permute(0, 2, 1)
|
||||
out_res = self.out_res_layers[i](out_res)
|
||||
out_res = self.regression_layers[i](out_res).permute(0, 2, 1)
|
||||
dec_out = dec_out + out_res
|
||||
return dec_out
|
||||
|
||||
def pre_enc(self, x_list):
|
||||
if self.channel_independence == 1:
|
||||
return (x_list, None)
|
||||
else:
|
||||
out1_list = []
|
||||
out2_list = []
|
||||
for x in x_list:
|
||||
x_1, x_2 = self.preprocess(x)
|
||||
out1_list.append(x_1)
|
||||
out2_list.append(x_2)
|
||||
return (out1_list, out2_list)
|
||||
|
||||
def __multi_scale_process_inputs(self, x_enc, x_mark_enc):
|
||||
if self.configs.down_sampling_method == 'max':
|
||||
down_pool = torch.nn.MaxPool1d(self.configs.down_sampling_window, return_indices=False)
|
||||
elif self.configs.down_sampling_method == 'avg':
|
||||
down_pool = torch.nn.AvgPool1d(self.configs.down_sampling_window)
|
||||
elif self.configs.down_sampling_method == 'conv':
|
||||
padding = 1 if torch.__version__ >= '1.5.0' else 2
|
||||
down_pool = nn.Conv1d(in_channels=self.configs.enc_in, out_channels=self.configs.enc_in,
|
||||
kernel_size=3, padding=padding,
|
||||
stride=self.configs.down_sampling_window,
|
||||
padding_mode='circular',
|
||||
bias=False)
|
||||
else:
|
||||
return x_enc, x_mark_enc
|
||||
# B,T,C -> B,C,T
|
||||
x_enc = x_enc.permute(0, 2, 1)
|
||||
|
||||
x_enc_ori = x_enc
|
||||
x_mark_enc_mark_ori = x_mark_enc
|
||||
|
||||
x_enc_sampling_list = []
|
||||
x_mark_sampling_list = []
|
||||
x_enc_sampling_list.append(x_enc.permute(0, 2, 1))
|
||||
x_mark_sampling_list.append(x_mark_enc)
|
||||
|
||||
for i in range(self.configs.down_sampling_layers):
|
||||
x_enc_sampling = down_pool(x_enc_ori)
|
||||
|
||||
x_enc_sampling_list.append(x_enc_sampling.permute(0, 2, 1))
|
||||
x_enc_ori = x_enc_sampling
|
||||
|
||||
if x_mark_enc_mark_ori is not None:
|
||||
x_mark_sampling_list.append(x_mark_enc_mark_ori[:, ::self.configs.down_sampling_window, :])
|
||||
x_mark_enc_mark_ori = x_mark_enc_mark_ori[:, ::self.configs.down_sampling_window, :]
|
||||
|
||||
x_enc = x_enc_sampling_list
|
||||
if x_mark_enc_mark_ori is not None:
|
||||
x_mark_enc = x_mark_sampling_list
|
||||
else:
|
||||
x_mark_enc = x_mark_enc
|
||||
|
||||
return x_enc, x_mark_enc
|
||||
|
||||
def forecast(self, x_enc, x_mark_enc, x_dec, x_mark_dec):
|
||||
|
||||
if self.use_future_temporal_feature:
|
||||
if self.channel_independence == 1:
|
||||
B, T, N = x_enc.size()
|
||||
x_mark_dec = x_mark_dec.repeat(N, 1, 1)
|
||||
self.x_mark_dec = self.enc_embedding(None, x_mark_dec)
|
||||
else:
|
||||
self.x_mark_dec = self.enc_embedding(None, x_mark_dec)
|
||||
|
||||
x_enc, x_mark_enc = self.__multi_scale_process_inputs(x_enc, x_mark_enc)
|
||||
|
||||
x_list = []
|
||||
x_mark_list = []
|
||||
if x_mark_enc is not None:
|
||||
for i, x, x_mark in zip(range(len(x_enc)), x_enc, x_mark_enc):
|
||||
B, T, N = x.size()
|
||||
x = self.normalize_layers[i](x, 'norm')
|
||||
if self.channel_independence == 1:
|
||||
x = x.permute(0, 2, 1).contiguous().reshape(B * N, T, 1)
|
||||
x_mark = x_mark.repeat(N, 1, 1)
|
||||
x_list.append(x)
|
||||
x_mark_list.append(x_mark)
|
||||
else:
|
||||
for i, x in zip(range(len(x_enc)), x_enc, ):
|
||||
B, T, N = x.size()
|
||||
x = self.normalize_layers[i](x, 'norm')
|
||||
if self.channel_independence == 1:
|
||||
x = x.permute(0, 2, 1).contiguous().reshape(B * N, T, 1)
|
||||
x_list.append(x)
|
||||
|
||||
# embedding
|
||||
enc_out_list = []
|
||||
x_list = self.pre_enc(x_list)
|
||||
if x_mark_enc is not None:
|
||||
for i, x, x_mark in zip(range(len(x_list[0])), x_list[0], x_mark_list):
|
||||
enc_out = self.enc_embedding(x, x_mark) # [B,T,C]
|
||||
enc_out_list.append(enc_out)
|
||||
else:
|
||||
for i, x in zip(range(len(x_list[0])), x_list[0]):
|
||||
enc_out = self.enc_embedding(x, None) # [B,T,C]
|
||||
enc_out_list.append(enc_out)
|
||||
|
||||
# Past Decomposable Mixing as encoder for past
|
||||
for i in range(self.layer):
|
||||
enc_out_list = self.pdm_blocks[i](enc_out_list)
|
||||
|
||||
# Future Multipredictor Mixing as decoder for future
|
||||
dec_out_list = self.future_multi_mixing(B, enc_out_list, x_list)
|
||||
|
||||
dec_out = torch.stack(dec_out_list, dim=-1).sum(-1)
|
||||
dec_out = self.normalize_layers[0](dec_out, 'denorm')
|
||||
return dec_out
|
||||
|
||||
def future_multi_mixing(self, B, enc_out_list, x_list):
|
||||
dec_out_list = []
|
||||
if self.channel_independence == 1:
|
||||
x_list = x_list[0]
|
||||
for i, enc_out in zip(range(len(x_list)), enc_out_list):
|
||||
dec_out = self.predict_layers[i](enc_out.permute(0, 2, 1)).permute(
|
||||
0, 2, 1) # align temporal dimension
|
||||
if self.use_future_temporal_feature:
|
||||
dec_out = dec_out + self.x_mark_dec
|
||||
dec_out = self.projection_layer(dec_out)
|
||||
else:
|
||||
dec_out = self.projection_layer(dec_out)
|
||||
dec_out = dec_out.reshape(B, self.configs.c_out, self.pred_len).permute(0, 2, 1).contiguous()
|
||||
dec_out_list.append(dec_out)
|
||||
|
||||
else:
|
||||
for i, enc_out, out_res in zip(range(len(x_list[0])), enc_out_list, x_list[1]):
|
||||
dec_out = self.predict_layers[i](enc_out.permute(0, 2, 1)).permute(
|
||||
0, 2, 1) # align temporal dimension
|
||||
dec_out = self.out_projection(dec_out, i, out_res)
|
||||
dec_out_list.append(dec_out)
|
||||
|
||||
return dec_out_list
|
||||
|
||||
def classification(self, x_enc, x_mark_enc):
|
||||
x_enc, _ = self.__multi_scale_process_inputs(x_enc, None)
|
||||
x_list = x_enc
|
||||
|
||||
# embedding
|
||||
enc_out_list = []
|
||||
for x in x_list:
|
||||
enc_out = self.enc_embedding(x, None) # [B,T,C]
|
||||
enc_out_list.append(enc_out)
|
||||
|
||||
# MultiScale-CrissCrossAttention as encoder for past
|
||||
for i in range(self.layer):
|
||||
enc_out_list = self.pdm_blocks[i](enc_out_list)
|
||||
|
||||
enc_out = enc_out_list[0]
|
||||
# Output
|
||||
# the output transformer encoder/decoder embeddings don't include non-linearity
|
||||
output = self.act(enc_out)
|
||||
output = self.dropout(output)
|
||||
# zero-out padding embeddings
|
||||
output = output * x_mark_enc.unsqueeze(-1)
|
||||
# (batch_size, seq_length * d_model)
|
||||
output = output.reshape(output.shape[0], -1)
|
||||
output = self.projection(output) # (batch_size, num_classes)
|
||||
return output
|
||||
|
||||
def anomaly_detection(self, x_enc):
|
||||
B, T, N = x_enc.size()
|
||||
x_enc, _ = self.__multi_scale_process_inputs(x_enc, None)
|
||||
|
||||
x_list = []
|
||||
|
||||
for i, x in zip(range(len(x_enc)), x_enc, ):
|
||||
B, T, N = x.size()
|
||||
x = self.normalize_layers[i](x, 'norm')
|
||||
if self.channel_independence == 1:
|
||||
x = x.permute(0, 2, 1).contiguous().reshape(B * N, T, 1)
|
||||
x_list.append(x)
|
||||
|
||||
# embedding
|
||||
enc_out_list = []
|
||||
for x in x_list:
|
||||
enc_out = self.enc_embedding(x, None) # [B,T,C]
|
||||
enc_out_list.append(enc_out)
|
||||
|
||||
# MultiScale-CrissCrossAttention as encoder for past
|
||||
for i in range(self.layer):
|
||||
enc_out_list = self.pdm_blocks[i](enc_out_list)
|
||||
|
||||
dec_out = self.projection_layer(enc_out_list[0])
|
||||
dec_out = dec_out.reshape(B, self.configs.c_out, -1).permute(0, 2, 1).contiguous()
|
||||
|
||||
dec_out = self.normalize_layers[0](dec_out, 'denorm')
|
||||
return dec_out
|
||||
|
||||
def imputation(self, x_enc, x_mark_enc, mask):
|
||||
means = torch.sum(x_enc, dim=1) / torch.sum(mask == 1, dim=1)
|
||||
means = means.unsqueeze(1).detach()
|
||||
x_enc = x_enc - means
|
||||
x_enc = x_enc.masked_fill(mask == 0, 0)
|
||||
stdev = torch.sqrt(torch.sum(x_enc * x_enc, dim=1) /
|
||||
torch.sum(mask == 1, dim=1) + 1e-5)
|
||||
stdev = stdev.unsqueeze(1).detach()
|
||||
x_enc /= stdev
|
||||
|
||||
B, T, N = x_enc.size()
|
||||
x_enc, x_mark_enc = self.__multi_scale_process_inputs(x_enc, x_mark_enc)
|
||||
|
||||
x_list = []
|
||||
x_mark_list = []
|
||||
if x_mark_enc is not None:
|
||||
for i, x, x_mark in zip(range(len(x_enc)), x_enc, x_mark_enc):
|
||||
B, T, N = x.size()
|
||||
if self.channel_independence == 1:
|
||||
x = x.permute(0, 2, 1).contiguous().reshape(B * N, T, 1)
|
||||
x_list.append(x)
|
||||
x_mark = x_mark.repeat(N, 1, 1)
|
||||
x_mark_list.append(x_mark)
|
||||
else:
|
||||
for i, x in zip(range(len(x_enc)), x_enc, ):
|
||||
B, T, N = x.size()
|
||||
if self.channel_independence == 1:
|
||||
x = x.permute(0, 2, 1).contiguous().reshape(B * N, T, 1)
|
||||
x_list.append(x)
|
||||
|
||||
# embedding
|
||||
enc_out_list = []
|
||||
for x in x_list:
|
||||
enc_out = self.enc_embedding(x, None) # [B,T,C]
|
||||
enc_out_list.append(enc_out)
|
||||
|
||||
# MultiScale-CrissCrossAttention as encoder for past
|
||||
for i in range(self.layer):
|
||||
enc_out_list = self.pdm_blocks[i](enc_out_list)
|
||||
|
||||
dec_out = self.projection_layer(enc_out_list[0])
|
||||
dec_out = dec_out.reshape(B, self.configs.c_out, -1).permute(0, 2, 1).contiguous()
|
||||
|
||||
dec_out = dec_out * \
|
||||
(stdev[:, 0, :].unsqueeze(1).repeat(1, self.seq_len, 1))
|
||||
dec_out = dec_out + \
|
||||
(means[:, 0, :].unsqueeze(1).repeat(1, self.seq_len, 1))
|
||||
return dec_out
|
||||
|
||||
def forward(self, x_enc, x_mark_enc, x_dec, x_mark_dec, mask=None):
|
||||
if self.task_name == 'long_term_forecast' or self.task_name == 'short_term_forecast':
|
||||
dec_out = self.forecast(x_enc, x_mark_enc, x_dec, x_mark_dec)
|
||||
return dec_out
|
||||
if self.task_name == 'imputation':
|
||||
dec_out = self.imputation(x_enc, x_mark_enc, mask)
|
||||
return dec_out # [B, L, D]
|
||||
if self.task_name == 'anomaly_detection':
|
||||
dec_out = self.anomaly_detection(x_enc)
|
||||
return dec_out # [B, L, D]
|
||||
if self.task_name == 'classification':
|
||||
dec_out = self.classification(x_enc, x_mark_enc)
|
||||
return dec_out # [B, N]
|
||||
else:
|
||||
raise ValueError('Other tasks implemented yet')
|
0
models/TimeMixer++/__init__.py
Normal file
0
models/TimeMixer++/__init__.py
Normal file
216
models/TimesNet/TimesNet.py
Normal file
216
models/TimesNet/TimesNet.py
Normal file
@ -0,0 +1,216 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torch.fft
|
||||
from layers.Embed import DataEmbedding
|
||||
from layers.Conv_Blocks import Inception_Block_V1
|
||||
|
||||
|
||||
def FFT_for_Period(x, k=2):
|
||||
# [B, T, C]
|
||||
xf = torch.fft.rfft(x, dim=1)
|
||||
# find period by amplitudes
|
||||
frequency_list = abs(xf).mean(0).mean(-1)
|
||||
frequency_list[0] = 0
|
||||
_, top_list = torch.topk(frequency_list, k)
|
||||
top_list = top_list.detach().cpu().numpy()
|
||||
period = x.shape[1] // top_list
|
||||
return period, abs(xf).mean(-1)[:, top_list]
|
||||
|
||||
|
||||
class TimesBlock(nn.Module):
|
||||
def __init__(self, configs):
|
||||
super(TimesBlock, self).__init__()
|
||||
self.seq_len = configs.seq_len
|
||||
self.pred_len = configs.pred_len
|
||||
self.k = configs.top_k
|
||||
# parameter-efficient design
|
||||
self.conv = nn.Sequential(
|
||||
Inception_Block_V1(configs.d_model, configs.d_ff,
|
||||
num_kernels=configs.num_kernels),
|
||||
nn.GELU(),
|
||||
Inception_Block_V1(configs.d_ff, configs.d_model,
|
||||
num_kernels=configs.num_kernels)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
B, T, N = x.size()
|
||||
period_list, period_weight = FFT_for_Period(x, self.k)
|
||||
|
||||
res = []
|
||||
for i in range(self.k):
|
||||
period = period_list[i]
|
||||
# padding
|
||||
if (self.seq_len + self.pred_len) % period != 0:
|
||||
length = (
|
||||
((self.seq_len + self.pred_len) // period) + 1) * period
|
||||
padding = torch.zeros([x.shape[0], (length - (self.seq_len + self.pred_len)), x.shape[2]]).to(x.device)
|
||||
out = torch.cat([x, padding], dim=1)
|
||||
else:
|
||||
length = (self.seq_len + self.pred_len)
|
||||
out = x
|
||||
# reshape
|
||||
out = out.reshape(B, length // period, period,
|
||||
N).permute(0, 3, 1, 2).contiguous()
|
||||
# 2D conv: from 1d Variation to 2d Variation
|
||||
out = self.conv(out)
|
||||
# reshape back
|
||||
out = out.permute(0, 2, 3, 1).reshape(B, -1, N)
|
||||
res.append(out[:, :(self.seq_len + self.pred_len), :])
|
||||
res = torch.stack(res, dim=-1)
|
||||
# adaptive aggregation
|
||||
period_weight = F.softmax(period_weight, dim=1)
|
||||
period_weight = period_weight.unsqueeze(
|
||||
1).unsqueeze(1).repeat(1, T, N, 1)
|
||||
res = torch.sum(res * period_weight, -1)
|
||||
# residual connection
|
||||
res = res + x
|
||||
return res
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
"""
|
||||
Paper link: https://openreview.net/pdf?id=ju_Uqw384Oq
|
||||
"""
|
||||
|
||||
def __init__(self, configs):
|
||||
super(Model, self).__init__()
|
||||
self.configs = configs
|
||||
self.task_name = configs.task_name
|
||||
self.seq_len = configs.seq_len
|
||||
self.label_len = configs.label_len
|
||||
self.pred_len = configs.pred_len
|
||||
self.model = nn.ModuleList([TimesBlock(configs)
|
||||
for _ in range(configs.e_layers)])
|
||||
self.enc_embedding = DataEmbedding(configs.enc_in, configs.d_model, configs.embed, configs.freq,
|
||||
configs.dropout)
|
||||
self.layer = configs.e_layers
|
||||
self.layer_norm = nn.LayerNorm(configs.d_model)
|
||||
if self.task_name == 'long_term_forecast' or self.task_name == 'short_term_forecast':
|
||||
self.predict_linear = nn.Linear(
|
||||
self.seq_len, self.pred_len + self.seq_len)
|
||||
self.projection = nn.Linear(
|
||||
configs.d_model, configs.c_out, bias=True)
|
||||
if self.task_name == 'imputation' or self.task_name == 'anomaly_detection':
|
||||
self.projection = nn.Linear(
|
||||
configs.d_model, configs.c_out, bias=True)
|
||||
if self.task_name == 'classification':
|
||||
self.act = F.gelu
|
||||
self.dropout = nn.Dropout(configs.dropout)
|
||||
self.projection = nn.Linear(
|
||||
configs.d_model * configs.seq_len, configs.num_class)
|
||||
|
||||
def forecast(self, x_enc, x_mark_enc, x_dec, x_mark_dec):
|
||||
# Normalization from Non-stationary Transformer
|
||||
means = x_enc.mean(1, keepdim=True).detach()
|
||||
x_enc = x_enc.sub(means)
|
||||
stdev = torch.sqrt(
|
||||
torch.var(x_enc, dim=1, keepdim=True, unbiased=False) + 1e-5)
|
||||
x_enc = x_enc.div(stdev)
|
||||
|
||||
# embedding
|
||||
enc_out = self.enc_embedding(x_enc, x_mark_enc) # [B,T,C]
|
||||
enc_out = self.predict_linear(enc_out.permute(0, 2, 1)).permute(
|
||||
0, 2, 1) # align temporal dimension
|
||||
|
||||
# TimesNet
|
||||
for i in range(self.layer):
|
||||
enc_out = self.layer_norm(self.model[i](enc_out))
|
||||
# project back
|
||||
dec_out = self.projection(enc_out)
|
||||
|
||||
# De-Normalization from Non-stationary Transformer
|
||||
dec_out = dec_out.mul(
|
||||
(stdev[:, 0, :].unsqueeze(1).repeat(
|
||||
1, self.pred_len + self.seq_len, 1)))
|
||||
dec_out = dec_out.add(
|
||||
(means[:, 0, :].unsqueeze(1).repeat(
|
||||
1, self.pred_len + self.seq_len, 1)))
|
||||
return dec_out
|
||||
|
||||
def imputation(self, x_enc, x_mark_enc, x_dec, x_mark_dec, mask):
|
||||
# Normalization from Non-stationary Transformer
|
||||
means = torch.sum(x_enc, dim=1) / torch.sum(mask == 1, dim=1)
|
||||
means = means.unsqueeze(1).detach()
|
||||
x_enc = x_enc.sub(means)
|
||||
x_enc = x_enc.masked_fill(mask == 0, 0)
|
||||
stdev = torch.sqrt(torch.sum(x_enc * x_enc, dim=1) /
|
||||
torch.sum(mask == 1, dim=1) + 1e-5)
|
||||
stdev = stdev.unsqueeze(1).detach()
|
||||
x_enc = x_enc.div(stdev)
|
||||
|
||||
# embedding
|
||||
enc_out = self.enc_embedding(x_enc, x_mark_enc) # [B,T,C]
|
||||
# TimesNet
|
||||
for i in range(self.layer):
|
||||
enc_out = self.layer_norm(self.model[i](enc_out))
|
||||
# project back
|
||||
dec_out = self.projection(enc_out)
|
||||
|
||||
# De-Normalization from Non-stationary Transformer
|
||||
dec_out = dec_out.mul(
|
||||
(stdev[:, 0, :].unsqueeze(1).repeat(
|
||||
1, self.pred_len + self.seq_len, 1)))
|
||||
dec_out = dec_out.add(
|
||||
(means[:, 0, :].unsqueeze(1).repeat(
|
||||
1, self.pred_len + self.seq_len, 1)))
|
||||
return dec_out
|
||||
|
||||
def anomaly_detection(self, x_enc):
|
||||
# Normalization from Non-stationary Transformer
|
||||
means = x_enc.mean(1, keepdim=True).detach()
|
||||
x_enc = x_enc.sub(means)
|
||||
stdev = torch.sqrt(
|
||||
torch.var(x_enc, dim=1, keepdim=True, unbiased=False) + 1e-5)
|
||||
x_enc = x_enc.div(stdev)
|
||||
|
||||
# embedding
|
||||
enc_out = self.enc_embedding(x_enc, None) # [B,T,C]
|
||||
# TimesNet
|
||||
for i in range(self.layer):
|
||||
enc_out = self.layer_norm(self.model[i](enc_out))
|
||||
# project back
|
||||
dec_out = self.projection(enc_out)
|
||||
|
||||
# De-Normalization from Non-stationary Transformer
|
||||
dec_out = dec_out.mul(
|
||||
(stdev[:, 0, :].unsqueeze(1).repeat(
|
||||
1, self.pred_len + self.seq_len, 1)))
|
||||
dec_out = dec_out.add(
|
||||
(means[:, 0, :].unsqueeze(1).repeat(
|
||||
1, self.pred_len + self.seq_len, 1)))
|
||||
return dec_out
|
||||
|
||||
def classification(self, x_enc, x_mark_enc):
|
||||
# embedding
|
||||
enc_out = self.enc_embedding(x_enc, None) # [B,T,C]
|
||||
# TimesNet
|
||||
for i in range(self.layer):
|
||||
enc_out = self.layer_norm(self.model[i](enc_out))
|
||||
|
||||
# Output
|
||||
# the output transformer encoder/decoder embeddings don't include non-linearity
|
||||
output = self.act(enc_out)
|
||||
output = self.dropout(output)
|
||||
# zero-out padding embeddings
|
||||
output = output * x_mark_enc.unsqueeze(-1)
|
||||
# (batch_size, seq_length * d_model)
|
||||
output = output.reshape(output.shape[0], -1)
|
||||
output = self.projection(output) # (batch_size, num_classes)
|
||||
return output
|
||||
|
||||
def forward(self, x_enc, x_mark_enc=None, x_dec=None, x_mark_dec=None, mask=None):
|
||||
if self.task_name == 'long_term_forecast' or self.task_name == 'short_term_forecast':
|
||||
dec_out = self.forecast(x_enc, x_mark_enc, x_dec, x_mark_dec)
|
||||
return dec_out[:, -self.pred_len:, :] # [B, L, D]
|
||||
if self.task_name == 'imputation':
|
||||
dec_out = self.imputation(
|
||||
x_enc, x_mark_enc, x_dec, x_mark_dec, mask)
|
||||
return dec_out # [B, L, D]
|
||||
if self.task_name == 'anomaly_detection':
|
||||
dec_out = self.anomaly_detection(x_enc)
|
||||
return dec_out # [B, L, D]
|
||||
if self.task_name == 'classification':
|
||||
dec_out = self.classification(x_enc, x_mark_enc)
|
||||
return dec_out # [B, N]
|
||||
return None
|
0
models/TimesNet/__init__.py
Normal file
0
models/TimesNet/__init__.py
Normal file
221
models/TimesNet_Q/TimesNet_Q.py
Normal file
221
models/TimesNet_Q/TimesNet_Q.py
Normal file
@ -0,0 +1,221 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torch.fft
|
||||
import numpy as np
|
||||
import os
|
||||
from layers.Embed import DataEmbedding
|
||||
from layers.Conv_Blocks import Inception_Block_V1
|
||||
|
||||
|
||||
def FFT_for_Period(x, k=2):
|
||||
# [B, T, C]
|
||||
xf = torch.fft.rfft(x, dim=1)
|
||||
# find period by amplitudes
|
||||
frequency_list = abs(xf).mean(0).mean(-1)
|
||||
frequency_list[0] = 0
|
||||
_, top_list = torch.topk(frequency_list, k)
|
||||
top_list = top_list.detach().cpu().numpy()
|
||||
period = x.shape[1] // top_list
|
||||
return period, abs(xf).mean(-1)[:, top_list]
|
||||
|
||||
|
||||
class TimesBlock(nn.Module):
|
||||
"""Original TimesBlock without Q matrix transformation"""
|
||||
def __init__(self, configs):
|
||||
super(TimesBlock, self).__init__()
|
||||
self.seq_len = configs.seq_len
|
||||
self.pred_len = configs.pred_len
|
||||
self.k = configs.top_k
|
||||
# parameter-efficient design
|
||||
self.conv = nn.Sequential(
|
||||
Inception_Block_V1(configs.d_model, configs.d_ff,
|
||||
num_kernels=configs.num_kernels),
|
||||
nn.GELU(),
|
||||
Inception_Block_V1(configs.d_ff, configs.d_model,
|
||||
num_kernels=configs.num_kernels)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
B, T, N = x.size()
|
||||
period_list, period_weight = FFT_for_Period(x, self.k)
|
||||
|
||||
res = []
|
||||
for i in range(self.k):
|
||||
period = period_list[i]
|
||||
# padding
|
||||
if (self.seq_len + self.pred_len) % period != 0:
|
||||
length = (
|
||||
((self.seq_len + self.pred_len) // period) + 1) * period
|
||||
padding = torch.zeros([x.shape[0], (length - (self.seq_len + self.pred_len)), x.shape[2]]).to(x.device)
|
||||
out = torch.cat([x, padding], dim=1)
|
||||
else:
|
||||
length = (self.seq_len + self.pred_len)
|
||||
out = x
|
||||
# reshape
|
||||
out = out.reshape(B, length // period, period,
|
||||
N).permute(0, 3, 1, 2).contiguous()
|
||||
# 2D conv: from 1d Variation to 2d Variation
|
||||
out = self.conv(out)
|
||||
# reshape back
|
||||
out = out.permute(0, 2, 3, 1).reshape(B, -1, N)
|
||||
res.append(out[:, :(self.seq_len + self.pred_len), :])
|
||||
res = torch.stack(res, dim=-1)
|
||||
# adaptive aggregation
|
||||
period_weight = F.softmax(period_weight, dim=1)
|
||||
period_weight = period_weight.unsqueeze(
|
||||
1).unsqueeze(1).repeat(1, T, N, 1)
|
||||
res = torch.sum(res * period_weight, -1)
|
||||
# residual connection
|
||||
res = res + x
|
||||
return res
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
"""
|
||||
TimesNet with Q matrix transformation
|
||||
- Applies input Q matrix transformation before embedding
|
||||
- Uses original TimesBlock logic
|
||||
- Applies output Q matrix transformation before De-Normalization
|
||||
Only implements long/short term forecasting
|
||||
"""
|
||||
|
||||
def __init__(self, configs):
|
||||
super(Model, self).__init__()
|
||||
self.configs = configs
|
||||
self.task_name = configs.task_name
|
||||
self.seq_len = configs.seq_len
|
||||
self.label_len = configs.label_len
|
||||
self.pred_len = configs.pred_len
|
||||
|
||||
# Load Q matrices
|
||||
self.load_Q_matrices(configs)
|
||||
|
||||
# Model layers
|
||||
self.model = nn.ModuleList([TimesBlock(configs)
|
||||
for _ in range(configs.e_layers)])
|
||||
self.enc_embedding = DataEmbedding(configs.enc_in, configs.d_model, configs.embed, configs.freq,
|
||||
configs.dropout)
|
||||
self.layer = configs.e_layers
|
||||
self.layer_norm = nn.LayerNorm(configs.d_model)
|
||||
|
||||
# Only implement forecast-related layers
|
||||
self.predict_linear = nn.Linear(
|
||||
self.seq_len, self.pred_len + self.seq_len)
|
||||
self.projection = nn.Linear(
|
||||
configs.d_model, configs.c_out, bias=True)
|
||||
|
||||
def load_Q_matrices(self, configs):
|
||||
"""Load pre-computed Q matrices for input and output transformations"""
|
||||
# Get dataset name from configs, default to ETTm1 if not specified
|
||||
dataset_name = getattr(configs, 'dataset', 'ETTm1')
|
||||
|
||||
# Input Q matrix (seq_len)
|
||||
input_q_path = f'cov_mats/{dataset_name}/{dataset_name}_{configs.seq_len}_ratio1.0.npy'
|
||||
# Output Q matrix (pred_len)
|
||||
output_q_path = f'cov_mats/{dataset_name}/{dataset_name}_{configs.pred_len}_ratio1.0.npy'
|
||||
|
||||
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
if os.path.exists(input_q_path):
|
||||
Q_input = np.load(input_q_path)
|
||||
self.register_buffer('Q_input', torch.FloatTensor(Q_input).to(device))
|
||||
print(f"Loaded input Q matrix from {input_q_path}, shape: {Q_input.shape}")
|
||||
else:
|
||||
print(f"Warning: Input Q matrix not found at {input_q_path}, using identity matrix")
|
||||
self.register_buffer('Q_input', torch.eye(configs.seq_len).to(device))
|
||||
|
||||
if os.path.exists(output_q_path):
|
||||
Q_output = np.load(output_q_path)
|
||||
self.register_buffer('Q_output', torch.FloatTensor(Q_output).to(device))
|
||||
print(f"Loaded output Q matrix from {output_q_path}, shape: {Q_output.shape}")
|
||||
else:
|
||||
print(f"Warning: Output Q matrix not found at {output_q_path}, using identity matrix")
|
||||
self.register_buffer('Q_output', torch.eye(configs.pred_len).to(device))
|
||||
|
||||
def apply_input_Q_transformation(self, x):
|
||||
"""
|
||||
Apply input Q matrix transformation before embedding
|
||||
Input: x with shape [B, T, N] where T = seq_len
|
||||
Output: transformed x with shape [B, T, N]
|
||||
"""
|
||||
B, T, N = x.size()
|
||||
|
||||
# Transpose to [B, N, T] for matrix multiplication
|
||||
x_transposed = x.transpose(-1, -2) # [B, N, T]
|
||||
|
||||
# Apply input Q transformation: einsum 'bnt,tv->bnv'
|
||||
# x_transposed: [B, N, T], Q_input.T: [T, T] -> result: [B, N, T]
|
||||
x_trans = torch.einsum('bnt,tv->bnv', x_transposed, self.Q_input.transpose(-1, -2))
|
||||
|
||||
# Transpose back to [B, T, N]
|
||||
x_transformed = x_trans.transpose(-1, -2) # [B, T, N]
|
||||
|
||||
return x_transformed
|
||||
|
||||
def apply_output_Q_transformation(self, x):
|
||||
"""
|
||||
Apply output Q matrix transformation to prediction output
|
||||
Input: x with shape [B, pred_len, N]
|
||||
Output: transformed x with shape [B, pred_len, N]
|
||||
"""
|
||||
B, T, N = x.size()
|
||||
assert T == self.pred_len, f"Expected pred_len {self.pred_len}, got {T}"
|
||||
|
||||
# Transpose to [B, N, T] for matrix multiplication
|
||||
x_transposed = x.transpose(-1, -2) # [B, N, pred_len]
|
||||
|
||||
# Apply output Q transformation: einsum 'bnt,tv->bnv'
|
||||
# x_transposed: [B, N, pred_len], Q_output: [pred_len, pred_len] -> result: [B, N, pred_len]
|
||||
x_trans = torch.einsum('bnt,tv->bnv', x_transposed, self.Q_output)
|
||||
|
||||
# Transpose back to [B, pred_len, N]
|
||||
x_transformed = x_trans.transpose(-1, -2) # [B, pred_len, N]
|
||||
|
||||
return x_transformed
|
||||
|
||||
def forecast(self, x_enc, x_mark_enc, x_dec, x_mark_dec):
|
||||
# Normalization from Non-stationary Transformer
|
||||
means = x_enc.mean(1, keepdim=True).detach()
|
||||
x_enc = x_enc.sub(means)
|
||||
stdev = torch.sqrt(
|
||||
torch.var(x_enc, dim=1, keepdim=True, unbiased=False) + 1e-5)
|
||||
x_enc = x_enc.div(stdev)
|
||||
|
||||
# Apply input Q matrix transformation before embedding
|
||||
x_enc_transformed = self.apply_input_Q_transformation(x_enc)
|
||||
|
||||
# embedding with transformed input
|
||||
enc_out = self.enc_embedding(x_enc_transformed, x_mark_enc) # [B,T,C]
|
||||
enc_out = self.predict_linear(enc_out.permute(0, 2, 1)).permute(
|
||||
0, 2, 1) # align temporal dimension
|
||||
|
||||
# TimesNet blocks (original logic, no Q transformation)
|
||||
for i in range(self.layer):
|
||||
enc_out = self.layer_norm(self.model[i](enc_out))
|
||||
|
||||
# project back
|
||||
dec_out = self.projection(enc_out)
|
||||
|
||||
# Extract prediction part and apply output Q transformation
|
||||
pred_out = dec_out[:, -self.pred_len:, :] # [B, pred_len, N]
|
||||
pred_out_transformed = self.apply_output_Q_transformation(pred_out)
|
||||
|
||||
# De-Normalization from Non-stationary Transformer
|
||||
pred_out_transformed = pred_out_transformed.mul(
|
||||
(stdev[:, 0, :].unsqueeze(1).repeat(
|
||||
1, self.pred_len, 1)))
|
||||
pred_out_transformed = pred_out_transformed.add(
|
||||
(means[:, 0, :].unsqueeze(1).repeat(
|
||||
1, self.pred_len, 1)))
|
||||
|
||||
return pred_out_transformed
|
||||
|
||||
def forward(self, x_enc, x_mark_enc=None, x_dec=None, x_mark_dec=None, mask=None):
|
||||
# Only support long_term_forecast and short_term_forecast
|
||||
if self.task_name == 'long_term_forecast' or self.task_name == 'short_term_forecast':
|
||||
dec_out = self.forecast(x_enc, x_mark_enc, x_dec, x_mark_dec)
|
||||
return dec_out # [B, pred_len, D]
|
||||
else:
|
||||
raise NotImplementedError(f"Task {self.task_name} is not implemented in TimesNet_Q")
|
||||
return None
|
3
models/TimesNet_Q/__init__.py
Normal file
3
models/TimesNet_Q/__init__.py
Normal file
@ -0,0 +1,3 @@
|
||||
from .TimesNet_Q import Model
|
||||
|
||||
__all__ = ['Model']
|
132
models/xPatch/network.py
Normal file
132
models/xPatch/network.py
Normal file
@ -0,0 +1,132 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
class Network(nn.Module):
|
||||
def __init__(self, seq_len, pred_len, patch_len, stride, padding_patch):
|
||||
super(Network, self).__init__()
|
||||
|
||||
# Parameters
|
||||
self.pred_len = pred_len
|
||||
|
||||
# Non-linear Stream
|
||||
# Patching
|
||||
self.patch_len = patch_len
|
||||
self.stride = stride
|
||||
self.padding_patch = padding_patch
|
||||
self.dim = patch_len * patch_len
|
||||
self.patch_num = (seq_len - patch_len)//stride + 1
|
||||
if padding_patch == 'end': # can be modified to general case
|
||||
self.padding_patch_layer = nn.ReplicationPad1d((0, stride))
|
||||
self.patch_num += 1
|
||||
|
||||
# Patch Embedding
|
||||
self.fc1 = nn.Linear(patch_len, self.dim)
|
||||
self.gelu1 = nn.GELU()
|
||||
self.bn1 = nn.BatchNorm1d(self.patch_num)
|
||||
|
||||
# CNN Depthwise
|
||||
self.conv1 = nn.Conv1d(self.patch_num, self.patch_num,
|
||||
patch_len, patch_len, groups=self.patch_num)
|
||||
self.gelu2 = nn.GELU()
|
||||
self.bn2 = nn.BatchNorm1d(self.patch_num)
|
||||
|
||||
# Residual Stream
|
||||
self.fc2 = nn.Linear(self.dim, patch_len)
|
||||
|
||||
# CNN Pointwise
|
||||
self.conv2 = nn.Conv1d(self.patch_num, self.patch_num, 1, 1)
|
||||
self.gelu3 = nn.GELU()
|
||||
self.bn3 = nn.BatchNorm1d(self.patch_num)
|
||||
|
||||
# Flatten Head
|
||||
self.flatten1 = nn.Flatten(start_dim=-2)
|
||||
self.fc3 = nn.Linear(self.patch_num * patch_len, pred_len * 2)
|
||||
self.gelu4 = nn.GELU()
|
||||
self.fc4 = nn.Linear(pred_len * 2, pred_len)
|
||||
|
||||
# Linear Stream
|
||||
# MLP
|
||||
self.fc5 = nn.Linear(seq_len, pred_len * 4)
|
||||
self.avgpool1 = nn.AvgPool1d(kernel_size=2)
|
||||
self.ln1 = nn.LayerNorm(pred_len * 2)
|
||||
|
||||
self.fc6 = nn.Linear(pred_len * 2, pred_len)
|
||||
self.avgpool2 = nn.AvgPool1d(kernel_size=2)
|
||||
self.ln2 = nn.LayerNorm(pred_len // 2)
|
||||
|
||||
self.fc7 = nn.Linear(pred_len // 2, pred_len)
|
||||
|
||||
# Streams Concatination
|
||||
self.fc8 = nn.Linear(pred_len * 2, pred_len)
|
||||
|
||||
def forward(self, s, t):
|
||||
# x: [Batch, Input, Channel]
|
||||
# s - seasonality
|
||||
# t - trend
|
||||
|
||||
s = s.permute(0,2,1) # to [Batch, Channel, Input]
|
||||
t = t.permute(0,2,1) # to [Batch, Channel, Input]
|
||||
|
||||
# Channel split for channel independence
|
||||
B = s.shape[0] # Batch size
|
||||
C = s.shape[1] # Channel size
|
||||
I = s.shape[2] # Input size
|
||||
s = torch.reshape(s, (B*C, I)) # [Batch and Channel, Input]
|
||||
t = torch.reshape(t, (B*C, I)) # [Batch and Channel, Input]
|
||||
|
||||
# Non-linear Stream
|
||||
# Patching
|
||||
if self.padding_patch == 'end':
|
||||
s = self.padding_patch_layer(s)
|
||||
s = s.unfold(dimension=-1, size=self.patch_len, step=self.stride)
|
||||
# s: [Batch and Channel, Patch_num, Patch_len]
|
||||
|
||||
# Patch Embedding
|
||||
s = self.fc1(s)
|
||||
s = self.gelu1(s)
|
||||
s = self.bn1(s)
|
||||
|
||||
res = s
|
||||
|
||||
# CNN Depthwise
|
||||
s = self.conv1(s)
|
||||
s = self.gelu2(s)
|
||||
s = self.bn2(s)
|
||||
|
||||
# Residual Stream
|
||||
res = self.fc2(res)
|
||||
s = s + res
|
||||
|
||||
# CNN Pointwise
|
||||
s = self.conv2(s)
|
||||
s = self.gelu3(s)
|
||||
s = self.bn3(s)
|
||||
|
||||
# Flatten Head
|
||||
s = self.flatten1(s)
|
||||
s = self.fc3(s)
|
||||
s = self.gelu4(s)
|
||||
s = self.fc4(s)
|
||||
|
||||
# Linear Stream
|
||||
# MLP
|
||||
t = self.fc5(t)
|
||||
t = self.avgpool1(t)
|
||||
t = self.ln1(t)
|
||||
|
||||
t = self.fc6(t)
|
||||
t = self.avgpool2(t)
|
||||
t = self.ln2(t)
|
||||
|
||||
t = self.fc7(t)
|
||||
|
||||
# Streams Concatination
|
||||
x = torch.cat((s, t), dim=1)
|
||||
x = self.fc8(x)
|
||||
|
||||
# Channel concatination
|
||||
x = torch.reshape(x, (B, C, self.pred_len)) # [Batch, Channel, Output]
|
||||
|
||||
x = x.permute(0,2,1) # to [Batch, Output, Channel]
|
||||
|
||||
return x
|
58
models/xPatch/xPatch.py
Normal file
58
models/xPatch/xPatch.py
Normal file
@ -0,0 +1,58 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import math
|
||||
|
||||
from layers.decomp import DECOMP
|
||||
from .network import Network
|
||||
# from layers.network_mlp import NetworkMLP # For ablation study with MLP-only stream
|
||||
# from layers.network_cnn import NetworkCNN # For ablation study with CNN-only stream
|
||||
from layers.revin import RevIN
|
||||
|
||||
class Model(nn.Module):
|
||||
def __init__(self, configs):
|
||||
super(Model, self).__init__()
|
||||
|
||||
# Parameters
|
||||
seq_len = configs.seq_len # lookback window L
|
||||
pred_len = configs.pred_len # prediction length (96, 192, 336, 720)
|
||||
c_in = configs.enc_in # input channels
|
||||
|
||||
# Patching
|
||||
patch_len = configs.patch_len
|
||||
stride = configs.stride
|
||||
padding_patch = configs.padding_patch
|
||||
|
||||
# Normalization
|
||||
self.revin = configs.revin
|
||||
self.revin_layer = RevIN(c_in,affine=True,subtract_last=False)
|
||||
|
||||
# Moving Average
|
||||
self.ma_type = configs.ma_type
|
||||
alpha = configs.alpha # smoothing factor for EMA (Exponential Moving Average)
|
||||
beta = configs.beta # smoothing factor for DEMA (Double Exponential Moving Average)
|
||||
|
||||
self.decomp = DECOMP(self.ma_type, alpha, beta)
|
||||
self.net = Network(seq_len, pred_len, patch_len, stride, padding_patch)
|
||||
# self.net_mlp = NetworkMLP(seq_len, pred_len) # For ablation study with MLP-only stream
|
||||
# self.net_cnn = NetworkCNN(seq_len, pred_len, patch_len, stride, padding_patch) # For ablation study with CNN-only stream
|
||||
|
||||
def forward(self, x):
|
||||
# x: [Batch, Input, Channel]
|
||||
|
||||
# Normalization
|
||||
if self.revin:
|
||||
x = self.revin_layer(x, 'norm')
|
||||
|
||||
if self.ma_type == 'reg': # If no decomposition, directly pass the input to the network
|
||||
x = self.net(x, x)
|
||||
# x = self.net_mlp(x) # For ablation study with MLP-only stream
|
||||
# x = self.net_cnn(x) # For ablation study with CNN-only stream
|
||||
else:
|
||||
seasonal_init, trend_init = self.decomp(x)
|
||||
x = self.net(seasonal_init, trend_init)
|
||||
|
||||
# Denormalization
|
||||
if self.revin:
|
||||
x = self.revin_layer(x, 'denorm')
|
||||
|
||||
return x
|
1
models/xPatch_Q/__init__.py
Normal file
1
models/xPatch_Q/__init__.py
Normal file
@ -0,0 +1 @@
|
||||
from .xPatch_Q import Model
|
132
models/xPatch_Q/network.py
Normal file
132
models/xPatch_Q/network.py
Normal file
@ -0,0 +1,132 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
class Network(nn.Module):
|
||||
def __init__(self, seq_len, pred_len, patch_len, stride, padding_patch):
|
||||
super(Network, self).__init__()
|
||||
|
||||
# Parameters
|
||||
self.pred_len = pred_len
|
||||
|
||||
# Non-linear Stream
|
||||
# Patching
|
||||
self.patch_len = patch_len
|
||||
self.stride = stride
|
||||
self.padding_patch = padding_patch
|
||||
self.dim = patch_len * patch_len
|
||||
self.patch_num = (seq_len - patch_len)//stride + 1
|
||||
if padding_patch == 'end': # can be modified to general case
|
||||
self.padding_patch_layer = nn.ReplicationPad1d((0, stride))
|
||||
self.patch_num += 1
|
||||
|
||||
# Patch Embedding
|
||||
self.fc1 = nn.Linear(patch_len, self.dim)
|
||||
self.gelu1 = nn.GELU()
|
||||
self.bn1 = nn.BatchNorm1d(self.patch_num)
|
||||
|
||||
# CNN Depthwise
|
||||
self.conv1 = nn.Conv1d(self.patch_num, self.patch_num,
|
||||
patch_len, patch_len, groups=self.patch_num)
|
||||
self.gelu2 = nn.GELU()
|
||||
self.bn2 = nn.BatchNorm1d(self.patch_num)
|
||||
|
||||
# Residual Stream
|
||||
self.fc2 = nn.Linear(self.dim, patch_len)
|
||||
|
||||
# CNN Pointwise
|
||||
self.conv2 = nn.Conv1d(self.patch_num, self.patch_num, 1, 1)
|
||||
self.gelu3 = nn.GELU()
|
||||
self.bn3 = nn.BatchNorm1d(self.patch_num)
|
||||
|
||||
# Flatten Head
|
||||
self.flatten1 = nn.Flatten(start_dim=-2)
|
||||
self.fc3 = nn.Linear(self.patch_num * patch_len, pred_len * 2)
|
||||
self.gelu4 = nn.GELU()
|
||||
self.fc4 = nn.Linear(pred_len * 2, pred_len)
|
||||
|
||||
# Linear Stream
|
||||
# MLP
|
||||
self.fc5 = nn.Linear(seq_len, pred_len * 4)
|
||||
self.avgpool1 = nn.AvgPool1d(kernel_size=2)
|
||||
self.ln1 = nn.LayerNorm(pred_len * 2)
|
||||
|
||||
self.fc6 = nn.Linear(pred_len * 2, pred_len)
|
||||
self.avgpool2 = nn.AvgPool1d(kernel_size=2)
|
||||
self.ln2 = nn.LayerNorm(pred_len // 2)
|
||||
|
||||
self.fc7 = nn.Linear(pred_len // 2, pred_len)
|
||||
|
||||
# Streams Concatination
|
||||
self.fc8 = nn.Linear(pred_len * 2, pred_len)
|
||||
|
||||
def forward(self, s, t):
|
||||
# x: [Batch, Input, Channel]
|
||||
# s - seasonality
|
||||
# t - trend
|
||||
|
||||
s = s.permute(0,2,1) # to [Batch, Channel, Input]
|
||||
t = t.permute(0,2,1) # to [Batch, Channel, Input]
|
||||
|
||||
# Channel split for channel independence
|
||||
B = s.shape[0] # Batch size
|
||||
C = s.shape[1] # Channel size
|
||||
I = s.shape[2] # Input size
|
||||
s = torch.reshape(s, (B*C, I)) # [Batch and Channel, Input]
|
||||
t = torch.reshape(t, (B*C, I)) # [Batch and Channel, Input]
|
||||
|
||||
# Non-linear Stream
|
||||
# Patching
|
||||
if self.padding_patch == 'end':
|
||||
s = self.padding_patch_layer(s)
|
||||
s = s.unfold(dimension=-1, size=self.patch_len, step=self.stride)
|
||||
# s: [Batch and Channel, Patch_num, Patch_len]
|
||||
|
||||
# Patch Embedding
|
||||
s = self.fc1(s)
|
||||
s = self.gelu1(s)
|
||||
s = self.bn1(s)
|
||||
|
||||
res = s
|
||||
|
||||
# CNN Depthwise
|
||||
s = self.conv1(s)
|
||||
s = self.gelu2(s)
|
||||
s = self.bn2(s)
|
||||
|
||||
# Residual Stream
|
||||
res = self.fc2(res)
|
||||
s = s + res
|
||||
|
||||
# CNN Pointwise
|
||||
s = self.conv2(s)
|
||||
s = self.gelu3(s)
|
||||
s = self.bn3(s)
|
||||
|
||||
# Flatten Head
|
||||
s = self.flatten1(s)
|
||||
s = self.fc3(s)
|
||||
s = self.gelu4(s)
|
||||
s = self.fc4(s)
|
||||
|
||||
# Linear Stream
|
||||
# MLP
|
||||
t = self.fc5(t)
|
||||
t = self.avgpool1(t)
|
||||
t = self.ln1(t)
|
||||
|
||||
t = self.fc6(t)
|
||||
t = self.avgpool2(t)
|
||||
t = self.ln2(t)
|
||||
|
||||
t = self.fc7(t)
|
||||
|
||||
# Streams Concatination
|
||||
x = torch.cat((s, t), dim=1)
|
||||
x = self.fc8(x)
|
||||
|
||||
# Channel concatination
|
||||
x = torch.reshape(x, (B, C, self.pred_len)) # [Batch, Channel, Output]
|
||||
|
||||
x = x.permute(0,2,1) # to [Batch, Output, Channel]
|
||||
|
||||
return x
|
146
models/xPatch_Q/xPatch_Q.py
Normal file
146
models/xPatch_Q/xPatch_Q.py
Normal file
@ -0,0 +1,146 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import math
|
||||
import numpy as np
|
||||
import os
|
||||
|
||||
from layers.decomp import DECOMP
|
||||
from .network import Network
|
||||
from layers.revin import RevIN
|
||||
|
||||
class Model(nn.Module):
|
||||
"""
|
||||
xPatch with Q matrix transformation
|
||||
- Applies RevIN normalization first
|
||||
- Applies input Q matrix transformation after RevIN normalization (based on dataset and seq_len)
|
||||
- Uses original xPatch logic (decomposition + dual stream network)
|
||||
- Applies output Q matrix transformation before RevIN denormalization (based on dataset and pred_len)
|
||||
"""
|
||||
|
||||
def __init__(self, configs):
|
||||
super(Model, self).__init__()
|
||||
|
||||
# Parameters
|
||||
seq_len = configs.seq_len # lookback window L
|
||||
pred_len = configs.pred_len # prediction length (96, 192, 336, 720)
|
||||
c_in = configs.enc_in # input channels
|
||||
|
||||
# Patching
|
||||
patch_len = configs.patch_len
|
||||
stride = configs.stride
|
||||
padding_patch = configs.padding_patch
|
||||
|
||||
# Store for Q matrix transformations
|
||||
self.seq_len = seq_len
|
||||
self.pred_len = pred_len
|
||||
|
||||
# Load Q matrices
|
||||
self.load_Q_matrices(configs)
|
||||
|
||||
# Normalization
|
||||
self.revin = configs.revin
|
||||
self.revin_layer = RevIN(c_in, affine=True, subtract_last=False)
|
||||
|
||||
# Moving Average
|
||||
self.ma_type = configs.ma_type
|
||||
alpha = configs.alpha # smoothing factor for EMA (Exponential Moving Average)
|
||||
beta = configs.beta # smoothing factor for DEMA (Double Exponential Moving Average)
|
||||
|
||||
self.decomp = DECOMP(self.ma_type, alpha, beta)
|
||||
self.net = Network(seq_len, pred_len, patch_len, stride, padding_patch)
|
||||
|
||||
def load_Q_matrices(self, configs):
|
||||
"""Load pre-computed Q matrices for input and output transformations"""
|
||||
# Get dataset name from configs, default to ETTm1 if not specified
|
||||
dataset_name = getattr(configs, 'dataset', 'ETTm1')
|
||||
|
||||
# Input Q matrix (seq_len)
|
||||
input_q_path = f'cov_mats/{dataset_name}/{dataset_name}_{configs.seq_len}_ratio1.0.npy'
|
||||
# Output Q matrix (pred_len)
|
||||
output_q_path = f'cov_mats/{dataset_name}/{dataset_name}_{configs.pred_len}_ratio1.0.npy'
|
||||
|
||||
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
if os.path.exists(input_q_path):
|
||||
Q_input = np.load(input_q_path)
|
||||
self.register_buffer('Q_input', torch.FloatTensor(Q_input).to(device))
|
||||
print(f"Loaded input Q matrix from {input_q_path}, shape: {Q_input.shape}")
|
||||
else:
|
||||
print(f"Warning: Input Q matrix not found at {input_q_path}, using identity matrix")
|
||||
self.register_buffer('Q_input', torch.eye(configs.seq_len).to(device))
|
||||
|
||||
if os.path.exists(output_q_path):
|
||||
Q_output = np.load(output_q_path)
|
||||
self.register_buffer('Q_output', torch.FloatTensor(Q_output).to(device))
|
||||
print(f"Loaded output Q matrix from {output_q_path}, shape: {Q_output.shape}")
|
||||
else:
|
||||
print(f"Warning: Output Q matrix not found at {output_q_path}, using identity matrix")
|
||||
self.register_buffer('Q_output', torch.eye(configs.pred_len).to(device))
|
||||
|
||||
def apply_input_Q_transformation(self, x):
|
||||
"""
|
||||
Apply input Q matrix transformation after RevIN normalization
|
||||
Input: x with shape [B, T, N] where T = seq_len
|
||||
Output: transformed x with shape [B, T, N]
|
||||
"""
|
||||
B, T, N = x.size()
|
||||
assert T == self.seq_len, f"Expected seq_len {self.seq_len}, got {T}"
|
||||
|
||||
# Transpose to [B, N, T] for matrix multiplication
|
||||
x_transposed = x.transpose(-1, -2) # [B, N, T]
|
||||
|
||||
# Apply input Q transformation: einsum 'bnt,tv->bnv'
|
||||
# x_transposed: [B, N, T], Q_input.T: [T, T] -> result: [B, N, T]
|
||||
x_trans = torch.einsum('bnt,tv->bnv', x_transposed, self.Q_input.transpose(-1, -2))
|
||||
|
||||
# Transpose back to [B, T, N]
|
||||
x_transformed = x_trans.transpose(-1, -2) # [B, T, N]
|
||||
|
||||
return x_transformed
|
||||
|
||||
def apply_output_Q_transformation(self, x):
|
||||
"""
|
||||
Apply output Q matrix transformation to prediction output
|
||||
Input: x with shape [B, pred_len, N]
|
||||
Output: transformed x with shape [B, pred_len, N]
|
||||
"""
|
||||
B, T, N = x.size()
|
||||
assert T == self.pred_len, f"Expected pred_len {self.pred_len}, got {T}"
|
||||
|
||||
# Transpose to [B, N, T] for matrix multiplication
|
||||
x_transposed = x.transpose(-1, -2) # [B, N, pred_len]
|
||||
|
||||
# Apply output Q transformation: einsum 'bnt,tv->bnv'
|
||||
# x_transposed: [B, N, pred_len], Q_output: [pred_len, pred_len] -> result: [B, N, pred_len]
|
||||
x_trans = torch.einsum('bnt,tv->bnv', x_transposed, self.Q_output)
|
||||
|
||||
# Transpose back to [B, pred_len, N]
|
||||
x_transformed = x_trans.transpose(-1, -2) # [B, pred_len, N]
|
||||
|
||||
return x_transformed
|
||||
|
||||
def forward(self, x):
|
||||
# x: [Batch, Input, Channel]
|
||||
|
||||
# RevIN Normalization
|
||||
if self.revin:
|
||||
x = self.revin_layer(x, 'norm')
|
||||
|
||||
# Apply input Q matrix transformation after RevIN normalization
|
||||
x_transformed = self.apply_input_Q_transformation(x)
|
||||
|
||||
# xPatch processing with Q-transformed input
|
||||
if self.ma_type == 'reg': # If no decomposition, directly pass the input to the network
|
||||
output = self.net(x_transformed, x_transformed)
|
||||
else:
|
||||
seasonal_init, trend_init = self.decomp(x_transformed)
|
||||
output = self.net(seasonal_init, trend_init)
|
||||
|
||||
# Apply output Q matrix transformation to the prediction
|
||||
output_transformed = self.apply_output_Q_transformation(output)
|
||||
|
||||
# RevIN Denormalization
|
||||
if self.revin:
|
||||
output_transformed = self.revin_layer(output_transformed, 'denorm')
|
||||
|
||||
return output_transformed
|
92
test.py
Normal file
92
test.py
Normal file
@ -0,0 +1,92 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Test script for processing ETT datasets with different prediction lengths.
|
||||
Processes ETTm1.csv and ETTm2.csv with prediction lengths of 96, 192, 336, 720.
|
||||
"""
|
||||
|
||||
import os
|
||||
import sys
|
||||
from dataflow import process_and_save_time_series
|
||||
|
||||
def main():
|
||||
# Configuration
|
||||
datasets = ['ETTm1', 'ETTm2']
|
||||
input_len = 96
|
||||
pred_lengths = [96, 192, 336, 720]
|
||||
slide_step = 1
|
||||
|
||||
# Split ratios (train:test:val = 6:2:2)
|
||||
train_ratio = 0.6
|
||||
test_ratio = 0.2
|
||||
val_ratio = 0.2
|
||||
|
||||
# Base paths
|
||||
data_dir = 'data/ETT-small'
|
||||
output_dir = 'processed_data'
|
||||
|
||||
# Create output directory if it doesn't exist
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
|
||||
print("Starting ETT dataset processing...")
|
||||
print(f"Input length: {input_len}")
|
||||
print(f"Split ratios - Train: {train_ratio}, Test: {test_ratio}, Val: {val_ratio}")
|
||||
print("-" * 60)
|
||||
|
||||
# Process each dataset
|
||||
for dataset in datasets:
|
||||
csv_path = os.path.join(data_dir, f"{dataset}.csv")
|
||||
|
||||
# Check if CSV file exists
|
||||
if not os.path.exists(csv_path):
|
||||
print(f"Warning: {csv_path} not found, skipping...")
|
||||
continue
|
||||
|
||||
print(f"\nProcessing {dataset}...")
|
||||
|
||||
# Process each prediction length
|
||||
for pred_len in pred_lengths:
|
||||
output_file = os.path.join(output_dir, f"{dataset}_input{input_len}_pred{pred_len}.npz")
|
||||
|
||||
print(f" - Prediction length {pred_len} -> {output_file}")
|
||||
|
||||
try:
|
||||
# Read CSV to get column names and exclude the date column
|
||||
import pandas as pd
|
||||
sample_data = pd.read_csv(csv_path)
|
||||
|
||||
# Get all columns except the first one (date column)
|
||||
feature_columns = sample_data.columns[1:].tolist()
|
||||
print(f" Features: {feature_columns} (excluding date column)")
|
||||
|
||||
result = process_and_save_time_series(
|
||||
csv_path=csv_path,
|
||||
output_file=output_file,
|
||||
input_len=input_len,
|
||||
pred_len=pred_len,
|
||||
slide_step=slide_step,
|
||||
train_ratio=train_ratio,
|
||||
test_ratio=test_ratio,
|
||||
val_ratio=val_ratio,
|
||||
selected_columns=feature_columns,
|
||||
date_column='date',
|
||||
freq='h'
|
||||
)
|
||||
|
||||
# Print dataset shapes for verification
|
||||
print(f" Train: {result['train_x'].shape} -> {result['train_y'].shape}")
|
||||
print(f" Test: {result['test_x'].shape} -> {result['test_y'].shape}")
|
||||
print(f" Val: {result['val_x'].shape} -> {result['val_y'].shape}")
|
||||
print(f" Train time marks: {result['train_x_mark'].shape} -> {result['train_y_mark'].shape}")
|
||||
print(f" Test time marks: {result['test_x_mark'].shape} -> {result['test_y_mark'].shape}")
|
||||
print(f" Val time marks: {result['val_x_mark'].shape} -> {result['val_y_mark'].shape}")
|
||||
|
||||
except Exception as e:
|
||||
print(f" Error processing {dataset} with pred_len {pred_len}: {e}")
|
||||
continue
|
||||
|
||||
print("\n" + "=" * 60)
|
||||
print("Processing completed!")
|
||||
print(f"Output files saved in: {os.path.abspath(output_dir)}")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
808
train/train.py
Normal file
808
train/train.py
Normal file
@ -0,0 +1,808 @@
|
||||
import os
|
||||
import time
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
from torch.utils.data import DataLoader, TensorDataset
|
||||
import swanlab
|
||||
from typing import Dict, Any, Optional, Callable, Union, Tuple
|
||||
from dataflow import data_provider
|
||||
|
||||
class EarlyStopping:
|
||||
"""Early stopping to stop training when validation performance doesn't improve."""
|
||||
def __init__(self, patience=7, verbose=False, delta=0, path='checkpoint.pt'):
|
||||
"""
|
||||
Args:
|
||||
patience (int): How long to wait after last improvement. Default: 7
|
||||
verbose (bool): If True, prints a message for each improvement. Default: False
|
||||
delta (float): Minimum change in monitored quantity to qualify as improvement. Default: 0
|
||||
path (str): Path for the checkpoint to be saved to. Default: 'checkpoint.pt'
|
||||
"""
|
||||
self.patience = patience
|
||||
self.verbose = verbose
|
||||
self.counter = 0
|
||||
self.best_score = None
|
||||
self.early_stop = False
|
||||
self.val_loss_min = float('inf')
|
||||
self.delta = delta
|
||||
self.path = path
|
||||
|
||||
def __call__(self, val_loss, model):
|
||||
score = -val_loss
|
||||
|
||||
if self.best_score is None:
|
||||
self.best_score = score
|
||||
self.save_checkpoint(val_loss, model)
|
||||
elif score < self.best_score + self.delta:
|
||||
self.counter += 1
|
||||
if self.verbose:
|
||||
print(f'EarlyStopping counter: {self.counter} out of {self.patience}')
|
||||
if self.counter >= self.patience:
|
||||
self.early_stop = True
|
||||
else:
|
||||
self.best_score = score
|
||||
self.save_checkpoint(val_loss, model)
|
||||
self.counter = 0
|
||||
|
||||
def save_checkpoint(self, val_loss, model):
|
||||
"""Save model when validation loss decreases."""
|
||||
if self.verbose:
|
||||
print(f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model...')
|
||||
torch.save(model.state_dict(), self.path)
|
||||
self.val_loss_min = val_loss
|
||||
|
||||
class DatasetWrapperWithoutTimeFeatures(torch.utils.data.Dataset):
|
||||
"""Wrapper to remove time features from dataflow datasets when use_x_mark=False"""
|
||||
def __init__(self, original_dataset):
|
||||
self.original_dataset = original_dataset
|
||||
|
||||
def __getitem__(self, index):
|
||||
# Get original data (seq_x, seq_y, seq_x_mark, seq_y_mark)
|
||||
seq_x, seq_y, seq_x_mark, seq_y_mark = self.original_dataset[index]
|
||||
# Return only seq_x and seq_y (remove time features)
|
||||
return seq_x, seq_y
|
||||
|
||||
def __len__(self):
|
||||
return len(self.original_dataset)
|
||||
|
||||
def inverse_transform(self, data):
|
||||
if hasattr(self.original_dataset, 'inverse_transform'):
|
||||
return self.original_dataset.inverse_transform(data)
|
||||
return data
|
||||
|
||||
def create_data_loaders_from_dataflow(args, use_x_mark: bool = True) -> Dict[str, DataLoader]:
|
||||
"""
|
||||
Create PyTorch DataLoaders using dataflow data_provider
|
||||
|
||||
Args:
|
||||
args: Arguments object containing dataset configuration
|
||||
Required attributes: data, root_path, data_path, seq_len, label_len, pred_len,
|
||||
features, target, embed, freq, batch_size, num_workers, train_only
|
||||
use_x_mark (bool): Whether to use time features (x_mark and y_mark)
|
||||
|
||||
Returns:
|
||||
Dict[str, DataLoader]: Dictionary with train, val, and test DataLoaders
|
||||
"""
|
||||
# Create datasets and dataloaders for each split
|
||||
train_data, _ = data_provider(args, flag='train')
|
||||
val_data, _ = data_provider(args, flag='val')
|
||||
test_data, _ = data_provider(args, flag='test')
|
||||
|
||||
# Wrap datasets to respect use_x_mark parameter
|
||||
if not use_x_mark:
|
||||
train_data = DatasetWrapperWithoutTimeFeatures(train_data)
|
||||
val_data = DatasetWrapperWithoutTimeFeatures(val_data)
|
||||
test_data = DatasetWrapperWithoutTimeFeatures(test_data)
|
||||
|
||||
# Determine batch size and other parameters based on flag
|
||||
train_shuffle = True
|
||||
val_shuffle = False
|
||||
test_shuffle = False
|
||||
|
||||
train_drop_last = True
|
||||
val_drop_last = True
|
||||
test_drop_last = True
|
||||
|
||||
batch_size = args.batch_size
|
||||
num_workers = args.num_workers
|
||||
|
||||
# Create new dataloaders with wrapped datasets
|
||||
train_loader = DataLoader(
|
||||
train_data,
|
||||
batch_size=batch_size,
|
||||
shuffle=train_shuffle,
|
||||
num_workers=num_workers,
|
||||
drop_last=train_drop_last
|
||||
)
|
||||
|
||||
val_loader = DataLoader(
|
||||
val_data,
|
||||
batch_size=batch_size,
|
||||
shuffle=val_shuffle,
|
||||
num_workers=num_workers,
|
||||
drop_last=val_drop_last
|
||||
)
|
||||
|
||||
test_loader = DataLoader(
|
||||
test_data,
|
||||
batch_size=batch_size,
|
||||
shuffle=test_shuffle,
|
||||
num_workers=num_workers,
|
||||
drop_last=test_drop_last
|
||||
)
|
||||
|
||||
return {
|
||||
'train': train_loader,
|
||||
'val': val_loader,
|
||||
'test': test_loader
|
||||
}
|
||||
|
||||
def create_data_loaders(data_path: str, batch_size: int = 32, use_x_mark: bool = True) -> Dict[str, DataLoader]:
|
||||
"""
|
||||
Create PyTorch DataLoaders from an NPZ file
|
||||
|
||||
Args:
|
||||
data_path (str): Path to the NPZ file containing the data
|
||||
batch_size (int): Batch size for the DataLoaders
|
||||
use_x_mark (bool): Whether to use time features (x_mark) from the data file
|
||||
|
||||
Returns:
|
||||
Dict[str, DataLoader]: Dictionary with train, val, and test DataLoaders
|
||||
"""
|
||||
# Load data from NPZ file
|
||||
data = np.load(data_path, allow_pickle=True)
|
||||
train_x = data['train_x']
|
||||
train_y = data['train_y']
|
||||
val_x = data['val_x']
|
||||
val_y = data['val_y']
|
||||
test_x = data['test_x']
|
||||
test_y = data['test_y']
|
||||
|
||||
# Load time features if available and needed
|
||||
if use_x_mark:
|
||||
train_x_mark = data.get('train_x_mark', None)
|
||||
train_y_mark = data.get('train_y_mark', None)
|
||||
val_x_mark = data.get('val_x_mark', None)
|
||||
val_y_mark = data.get('val_y_mark', None)
|
||||
test_x_mark = data.get('test_x_mark', None)
|
||||
test_y_mark = data.get('test_y_mark', None)
|
||||
else:
|
||||
train_x_mark = None
|
||||
train_y_mark = None
|
||||
val_x_mark = None
|
||||
val_y_mark = None
|
||||
test_x_mark = None
|
||||
test_y_mark = None
|
||||
|
||||
# Convert to PyTorch tensors
|
||||
train_x = torch.FloatTensor(train_x)
|
||||
train_y = torch.FloatTensor(train_y)
|
||||
val_x = torch.FloatTensor(val_x)
|
||||
val_y = torch.FloatTensor(val_y)
|
||||
test_x = torch.FloatTensor(test_x)
|
||||
test_y = torch.FloatTensor(test_y)
|
||||
|
||||
# Create datasets based on whether time features are available
|
||||
if train_x_mark is not None:
|
||||
train_x_mark = torch.FloatTensor(train_x_mark)
|
||||
train_y_mark = torch.FloatTensor(train_y_mark)
|
||||
val_x_mark = torch.FloatTensor(val_x_mark)
|
||||
val_y_mark = torch.FloatTensor(val_y_mark)
|
||||
test_x_mark = torch.FloatTensor(test_x_mark)
|
||||
test_y_mark = torch.FloatTensor(test_y_mark)
|
||||
|
||||
train_dataset = TensorDataset(train_x, train_y, train_x_mark, train_y_mark)
|
||||
val_dataset = TensorDataset(val_x, val_y, val_x_mark, val_y_mark)
|
||||
test_dataset = TensorDataset(test_x, test_y, test_x_mark, test_y_mark)
|
||||
else:
|
||||
train_dataset = TensorDataset(train_x, train_y)
|
||||
val_dataset = TensorDataset(val_x, val_y)
|
||||
test_dataset = TensorDataset(test_x, test_y)
|
||||
|
||||
# Create dataloaders
|
||||
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
|
||||
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
|
||||
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
|
||||
|
||||
return {
|
||||
'train': train_loader,
|
||||
'val': val_loader,
|
||||
'test': test_loader
|
||||
}
|
||||
|
||||
def train_forecasting_model(
|
||||
model_constructor: Callable,
|
||||
data_path: str,
|
||||
project_name: str,
|
||||
config: Dict[str, Any],
|
||||
device: Optional[str] = None,
|
||||
early_stopping_patience: int = 10,
|
||||
max_epochs: int = 100,
|
||||
checkpoint_dir: str = "./checkpoints",
|
||||
log_interval: int = 10,
|
||||
use_x_mark: bool = True,
|
||||
dataset_mode: str = "npz",
|
||||
dataflow_args = None
|
||||
) -> Tuple[nn.Module, Dict[str, float]]:
|
||||
"""
|
||||
Train a time series forecasting model
|
||||
|
||||
Args:
|
||||
model_constructor (Callable): Function that constructs and returns the model
|
||||
data_path (str): Path to the NPZ file containing the processed data (for npz mode)
|
||||
project_name (str): Name of the project for swanlab tracking
|
||||
config (Dict[str, Any]): Configuration dictionary for the experiment
|
||||
device (Optional[str]): Device to use for training ('cpu' or 'cuda')
|
||||
early_stopping_patience (int): Number of epochs to wait before early stopping
|
||||
max_epochs (int): Maximum number of epochs to train for
|
||||
checkpoint_dir (str): Directory to save model checkpoints
|
||||
log_interval (int): How often to log metrics during training
|
||||
use_x_mark (bool): Whether to use time features (x_mark) from the data file
|
||||
dataset_mode (str): Dataset construction mode - "npz" or "dataflow"
|
||||
dataflow_args: Arguments object for dataflow mode (required if dataset_mode="dataflow")
|
||||
|
||||
Returns:
|
||||
Tuple[nn.Module, Dict[str, float]]: Trained model and dictionary of evaluation metrics
|
||||
"""
|
||||
# Setup device
|
||||
if device is None:
|
||||
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||||
|
||||
# Initialize swanlab for experiment tracking
|
||||
swanlab_run = swanlab.init(
|
||||
project=project_name,
|
||||
config=config,
|
||||
)
|
||||
|
||||
# Create checkpoint directory if it doesn't exist
|
||||
os.makedirs(checkpoint_dir, exist_ok=True)
|
||||
checkpoint_path = os.path.join(checkpoint_dir, f"{project_name}.pt")
|
||||
|
||||
# Create data loaders based on dataset_mode
|
||||
if dataset_mode == "dataflow":
|
||||
if dataflow_args is None:
|
||||
raise ValueError("dataflow_args is required when dataset_mode='dataflow'")
|
||||
dataloaders = create_data_loaders_from_dataflow(
|
||||
dataflow_args,
|
||||
use_x_mark=use_x_mark
|
||||
)
|
||||
else: # Default to "npz" mode
|
||||
dataloaders = create_data_loaders(
|
||||
data_path=data_path,
|
||||
batch_size=config.get('batch_size', 32),
|
||||
use_x_mark=use_x_mark
|
||||
)
|
||||
|
||||
# Construct the model
|
||||
model = model_constructor()
|
||||
model = model.to(device)
|
||||
|
||||
# Define loss function and optimizer
|
||||
criterion = nn.MSELoss()
|
||||
optimizer = optim.Adam(
|
||||
model.parameters(),
|
||||
lr=config.get('learning_rate', 1e-3),
|
||||
)
|
||||
|
||||
# Add learning rate scheduler to halve LR after each epoch
|
||||
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.5)
|
||||
|
||||
# Initialize early stopping
|
||||
early_stopping = EarlyStopping(
|
||||
patience=early_stopping_patience,
|
||||
verbose=True,
|
||||
path=checkpoint_path
|
||||
)
|
||||
|
||||
# Training loop
|
||||
best_val_loss = float('inf')
|
||||
metrics = {}
|
||||
|
||||
for epoch in range(max_epochs):
|
||||
print(f"Epoch {epoch+1}/{max_epochs}")
|
||||
|
||||
# Training phase
|
||||
model.train()
|
||||
print("1\n")
|
||||
train_loss = 0.0
|
||||
|
||||
# 用于记录 log_interval 期间的损失
|
||||
interval_loss = 0.0
|
||||
start_time = time.time()
|
||||
|
||||
for batch_idx, batch_data in enumerate(dataloaders['train']):
|
||||
# Handle both cases: with and without time features
|
||||
if len(batch_data) == 4: # With time features
|
||||
inputs, targets, x_mark, y_mark = batch_data
|
||||
inputs, targets = inputs.to(device), targets.to(device)
|
||||
x_mark, y_mark = x_mark.to(device), y_mark.to(device)
|
||||
else: # Without time features
|
||||
inputs, targets = batch_data
|
||||
inputs, targets = inputs.to(device), targets.to(device)
|
||||
x_mark, y_mark = None, None
|
||||
|
||||
# Zero the parameter gradients
|
||||
optimizer.zero_grad()
|
||||
|
||||
# Forward pass - handle both cases
|
||||
if x_mark is not None:
|
||||
# For TimesNet model with time features
|
||||
# Create decoder input (zeros for forecasting)
|
||||
outputs = model(inputs, x_mark)
|
||||
else:
|
||||
# For simple models without time features
|
||||
outputs = model(inputs)
|
||||
|
||||
loss = criterion(outputs, targets)
|
||||
|
||||
# Backward pass and optimize
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
# Update statistics
|
||||
train_loss += loss.item()
|
||||
interval_loss += loss.item()
|
||||
|
||||
if (batch_idx + 1) % log_interval == 0:
|
||||
print(f"Batch {batch_idx+1}/{len(dataloaders['train'])}, Loss: {loss.item():.4f}")
|
||||
# 计算这一个 interval 的平均损失并记录
|
||||
avg_interval_loss = interval_loss / log_interval
|
||||
swanlab_run.log({"batch_train_loss": avg_interval_loss})
|
||||
|
||||
# 重置 interval loss 以进行下一次计算
|
||||
interval_loss = 0.0
|
||||
|
||||
avg_train_loss = train_loss / len(dataloaders['train'])
|
||||
epoch_time = time.time() - start_time
|
||||
|
||||
# Validation phase
|
||||
model.eval()
|
||||
val_loss = 0.0
|
||||
val_mse = 0.0
|
||||
|
||||
with torch.no_grad():
|
||||
for batch_data in dataloaders['val']:
|
||||
# Handle both cases: with and without time features
|
||||
if len(batch_data) == 4: # With time features
|
||||
inputs, targets, x_mark, y_mark = batch_data
|
||||
inputs, targets = inputs.float().to(device), targets.float().to(device)
|
||||
x_mark, y_mark = x_mark.float().to(device), y_mark.float().to(device)
|
||||
else: # Without time features
|
||||
inputs, targets = batch_data
|
||||
inputs, targets = inputs.float().to(device), targets.float().to(device)
|
||||
x_mark, y_mark = None, None
|
||||
|
||||
# Forward pass - handle both cases
|
||||
if x_mark is not None:
|
||||
# For TimesNet model with time features
|
||||
outputs = model(inputs, x_mark)
|
||||
else:
|
||||
# For simple models without time features
|
||||
outputs = model(inputs)
|
||||
|
||||
# Calculate loss
|
||||
loss = criterion(outputs, targets)
|
||||
val_loss += loss.item()
|
||||
|
||||
|
||||
avg_val_loss = val_loss / len(dataloaders['val'])
|
||||
current_lr = optimizer.param_groups[0]['lr']
|
||||
|
||||
# Log metrics
|
||||
metrics_dict = {
|
||||
"train_loss": avg_train_loss,
|
||||
"val_loss": avg_val_loss,
|
||||
"learning_rate": current_lr,
|
||||
"epoch_time": epoch_time
|
||||
}
|
||||
|
||||
swanlab_run.log(metrics_dict)
|
||||
|
||||
print(f"Epoch {epoch+1}/{max_epochs}, "
|
||||
f"Train Loss: {avg_train_loss:.4f}, "
|
||||
f"Val Loss: {avg_val_loss:.4f}, "
|
||||
f"LR: {current_lr:.6f}, "
|
||||
f"Time: {epoch_time:.2f}s")
|
||||
|
||||
# Check if we should save the model
|
||||
if avg_val_loss < best_val_loss:
|
||||
best_val_loss = avg_val_loss
|
||||
metrics = metrics_dict
|
||||
|
||||
# Early stopping
|
||||
early_stopping(avg_val_loss, model)
|
||||
if early_stopping.early_stop:
|
||||
print("Early stopping triggered")
|
||||
break
|
||||
|
||||
# Step the learning rate scheduler
|
||||
scheduler.step()
|
||||
|
||||
# Load the best model
|
||||
model.load_state_dict(torch.load(checkpoint_path))
|
||||
|
||||
# Test evaluation on the best model
|
||||
model.eval()
|
||||
test_loss = 0.0
|
||||
test_mse = 0.0
|
||||
|
||||
print("Evaluating on test set...")
|
||||
with torch.no_grad():
|
||||
for batch_data in dataloaders['test']:
|
||||
# Handle both cases: with and without time features
|
||||
if len(batch_data) == 4: # With time features
|
||||
inputs, targets, x_mark, y_mark = batch_data
|
||||
inputs, targets = inputs.float().to(device), targets.float().to(device)
|
||||
x_mark, y_mark = x_mark.float().to(device), y_mark.float().to(device)
|
||||
else: # Without time features
|
||||
inputs, targets = batch_data
|
||||
inputs, targets = inputs.float().to(device), targets.float().to(device)
|
||||
x_mark, y_mark = None, None
|
||||
|
||||
# Forward pass - handle both cases
|
||||
if x_mark is not None:
|
||||
# For TimesNet model with time features
|
||||
outputs = model(inputs, x_mark)
|
||||
else:
|
||||
# For simple models without time features
|
||||
outputs = model(inputs)
|
||||
|
||||
# Calculate loss
|
||||
loss = criterion(outputs, targets)
|
||||
test_loss += loss.item()
|
||||
|
||||
test_loss /= len(dataloaders['test'])
|
||||
|
||||
print(f"Test evaluation completed!")
|
||||
print(f"Test Loss (MSE): {test_loss:.6f}")
|
||||
|
||||
# Final validation for consistency
|
||||
model.eval()
|
||||
final_val_loss = 0.0
|
||||
final_val_mse = 0.0
|
||||
|
||||
with torch.no_grad():
|
||||
for batch_data in dataloaders['val']:
|
||||
# Handle both cases: with and without time features
|
||||
if len(batch_data) == 4: # With time features
|
||||
inputs, targets, x_mark, y_mark = batch_data
|
||||
inputs, targets = inputs.float().to(device), targets.float().to(device)
|
||||
x_mark, y_mark = x_mark.float().to(device), y_mark.float().to(device)
|
||||
else: # Without time features
|
||||
inputs, targets = batch_data
|
||||
inputs, targets = inputs.float().to(device), targets.float().to(device)
|
||||
x_mark, y_mark = None, None
|
||||
|
||||
# Forward pass - handle both cases
|
||||
if x_mark is not None:
|
||||
# For TimesNet model with time features
|
||||
outputs = model(inputs, x_mark)
|
||||
else:
|
||||
# For simple models without time features
|
||||
outputs = model(inputs)
|
||||
|
||||
# Calculate loss
|
||||
loss = criterion(outputs, targets)
|
||||
final_val_loss += loss.item()
|
||||
|
||||
|
||||
final_val_loss /= len(dataloaders['val'])
|
||||
|
||||
print(f"Final validation loss: {final_val_loss:.6f}")
|
||||
|
||||
# Log final test results to swanlab
|
||||
final_metrics = {
|
||||
"final_test_loss": test_loss,
|
||||
"final_val_loss": final_val_loss
|
||||
}
|
||||
swanlab_run.log(final_metrics)
|
||||
|
||||
# Update metrics with final values
|
||||
metrics["final_val_loss"] = final_val_loss
|
||||
metrics["final_test_loss"] = test_loss
|
||||
|
||||
# Finish the swanlab run
|
||||
swanlab_run.finish()
|
||||
|
||||
return model, metrics
|
||||
|
||||
def train_classification_model(
|
||||
model_constructor: Callable,
|
||||
data_path: str,
|
||||
project_name: str,
|
||||
config: Dict[str, Any],
|
||||
device: Optional[str] = None,
|
||||
early_stopping_patience: int = 10,
|
||||
max_epochs: int = 100,
|
||||
checkpoint_dir: str = "./checkpoints",
|
||||
log_interval: int = 10,
|
||||
use_x_mark: bool = True,
|
||||
dataset_mode: str = "npz",
|
||||
dataflow_args = None
|
||||
) -> Tuple[nn.Module, Dict[str, float]]:
|
||||
"""
|
||||
Train a time series classification model
|
||||
|
||||
Args:
|
||||
model_constructor (Callable): Function that constructs and returns the model
|
||||
data_path (str): Path to the NPZ file containing the processed data (for npz mode)
|
||||
project_name (str): Name of the project for swanlab tracking
|
||||
config (Dict[str, Any]): Configuration dictionary for the experiment
|
||||
device (Optional[str]): Device to use for training ('cpu' or 'cuda')
|
||||
early_stopping_patience (int): Number of epochs to wait before early stopping
|
||||
max_epochs (int): Maximum number of epochs to train for
|
||||
checkpoint_dir (str): Directory to save model checkpoints
|
||||
log_interval (int): How often to log metrics during training
|
||||
use_x_mark (bool): Whether to use time features (x_mark) from the data file
|
||||
dataset_mode (str): Dataset construction mode - "npz" or "dataflow"
|
||||
dataflow_args: Arguments object for dataflow mode (required if dataset_mode="dataflow")
|
||||
|
||||
Returns:
|
||||
Tuple[nn.Module, Dict[str, float]]: Trained model and dictionary of evaluation metrics
|
||||
"""
|
||||
# Setup device
|
||||
if device is None:
|
||||
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||||
|
||||
# Initialize swanlab for experiment tracking
|
||||
swanlab_run = swanlab.init(
|
||||
project=project_name,
|
||||
config=config,
|
||||
)
|
||||
|
||||
# Create checkpoint directory if it doesn't exist
|
||||
os.makedirs(checkpoint_dir, exist_ok=True)
|
||||
checkpoint_path = os.path.join(checkpoint_dir, f"{project_name}.pt")
|
||||
|
||||
# Create data loaders based on dataset_mode
|
||||
if dataset_mode == "dataflow":
|
||||
if dataflow_args is None:
|
||||
raise ValueError("dataflow_args is required when dataset_mode='dataflow'")
|
||||
dataloaders = create_data_loaders_from_dataflow(
|
||||
dataflow_args,
|
||||
use_x_mark=use_x_mark
|
||||
)
|
||||
else: # Default to "npz" mode
|
||||
dataloaders = create_data_loaders(
|
||||
data_path=data_path,
|
||||
batch_size=config.get('batch_size', 32),
|
||||
use_x_mark=use_x_mark
|
||||
)
|
||||
|
||||
# Construct the model
|
||||
model = model_constructor()
|
||||
model = model.to(device)
|
||||
|
||||
# Define loss function and optimizer
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
optimizer = optim.Adam(
|
||||
model.parameters(),
|
||||
lr=config.get('learning_rate', 1e-3),
|
||||
weight_decay=config.get('weight_decay', 1e-4)
|
||||
)
|
||||
|
||||
# Add learning rate scheduler to halve LR after each epoch
|
||||
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.5)
|
||||
|
||||
# Initialize early stopping
|
||||
early_stopping = EarlyStopping(
|
||||
patience=early_stopping_patience,
|
||||
verbose=True,
|
||||
path=checkpoint_path
|
||||
)
|
||||
|
||||
# Training loop
|
||||
best_val_loss = float('inf')
|
||||
metrics = {}
|
||||
|
||||
for epoch in range(max_epochs):
|
||||
print(f"Epoch {epoch+1}/{max_epochs}")
|
||||
|
||||
# Training phase
|
||||
model.train()
|
||||
train_loss = 0.0
|
||||
train_correct = 0
|
||||
train_total = 0
|
||||
start_time = time.time()
|
||||
|
||||
for batch_idx, batch_data in enumerate(dataloaders['train']):
|
||||
# Handle both cases: with and without time features
|
||||
if len(batch_data) == 4: # With time features
|
||||
inputs, targets, x_mark, y_mark = batch_data
|
||||
inputs, targets = inputs.float().to(device), targets.float().to(device)
|
||||
x_mark, y_mark = x_mark.float().to(device), y_mark.float().to(device)
|
||||
else: # Without time features
|
||||
inputs, targets = batch_data
|
||||
inputs, targets = inputs.float().to(device), targets.float().to(device)
|
||||
x_mark, y_mark = None, None
|
||||
|
||||
# Convert targets to long for classification
|
||||
targets = targets.long()
|
||||
|
||||
# Zero the parameter gradients
|
||||
optimizer.zero_grad()
|
||||
|
||||
# Forward pass - handle both cases
|
||||
if x_mark is not None:
|
||||
# For TimesNet model with time features
|
||||
dec_inp = torch.zeros_like(targets).to(device)
|
||||
outputs = model(inputs, x_mark, dec_inp, y_mark)
|
||||
else:
|
||||
# For simple models without time features
|
||||
outputs = model(inputs)
|
||||
|
||||
loss = criterion(outputs, targets)
|
||||
|
||||
# Backward pass and optimize
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
# Update statistics
|
||||
train_loss += loss.item()
|
||||
_, predicted = outputs.max(1)
|
||||
train_total += targets.size(0)
|
||||
train_correct += predicted.eq(targets).sum().item()
|
||||
|
||||
if (batch_idx + 1) % log_interval == 0:
|
||||
print(f"Batch {batch_idx+1}/{len(dataloaders['train'])}, Loss: {loss.item():.4f}")
|
||||
|
||||
avg_train_loss = train_loss / len(dataloaders['train'])
|
||||
train_accuracy = 100. * train_correct / train_total
|
||||
epoch_time = time.time() - start_time
|
||||
|
||||
# Validation phase
|
||||
model.eval()
|
||||
val_loss = 0.0
|
||||
val_correct = 0
|
||||
val_total = 0
|
||||
|
||||
with torch.no_grad():
|
||||
for batch_data in dataloaders['val']:
|
||||
# Handle both cases: with and without time features
|
||||
if len(batch_data) == 4: # With time features
|
||||
inputs, targets, x_mark, y_mark = batch_data
|
||||
inputs, targets = inputs.float().to(device), targets.float().to(device)
|
||||
x_mark, y_mark = x_mark.float().to(device), y_mark.float().to(device)
|
||||
else: # Without time features
|
||||
inputs, targets = batch_data
|
||||
inputs, targets = inputs.float().to(device), targets.float().to(device)
|
||||
x_mark, y_mark = None, None
|
||||
|
||||
targets = targets.long()
|
||||
|
||||
# Forward pass - handle both cases
|
||||
if x_mark is not None:
|
||||
# For TimesNet model with time features
|
||||
dec_inp = torch.zeros_like(targets).to(device)
|
||||
outputs = model(inputs, x_mark, dec_inp, y_mark)
|
||||
else:
|
||||
# For simple models without time features
|
||||
outputs = model(inputs)
|
||||
|
||||
# Calculate loss
|
||||
loss = criterion(outputs, targets)
|
||||
val_loss += loss.item()
|
||||
|
||||
# Calculate accuracy
|
||||
_, predicted = outputs.max(1)
|
||||
val_total += targets.size(0)
|
||||
val_correct += predicted.eq(targets).sum().item()
|
||||
|
||||
avg_val_loss = val_loss / len(dataloaders['val'])
|
||||
val_accuracy = 100. * val_correct / val_total
|
||||
current_lr = optimizer.param_groups[0]['lr']
|
||||
|
||||
# Log metrics
|
||||
metrics_dict = {
|
||||
"train_loss": avg_train_loss,
|
||||
"val_loss": avg_val_loss,
|
||||
"val_accuracy": val_accuracy,
|
||||
"learning_rate": current_lr,
|
||||
"epoch_time": epoch_time
|
||||
}
|
||||
|
||||
swanlab_run.log(metrics_dict)
|
||||
|
||||
print(f"Epoch {epoch+1}/{max_epochs}, "
|
||||
f"Train Loss: {avg_train_loss:.4f}, "
|
||||
f"Val Loss: {avg_val_loss:.4f}, "
|
||||
f"Val Accuracy: {val_accuracy:.2f}%, "
|
||||
f"LR: {current_lr:.6f}, "
|
||||
f"Time: {epoch_time:.2f}s")
|
||||
|
||||
# Check if we should save the model
|
||||
if avg_val_loss < best_val_loss:
|
||||
best_val_loss = avg_val_loss
|
||||
metrics = metrics_dict
|
||||
|
||||
# Early stopping
|
||||
early_stopping(avg_val_loss, model)
|
||||
if early_stopping.early_stop:
|
||||
print("Early stopping triggered")
|
||||
break
|
||||
|
||||
# Step the learning rate scheduler
|
||||
scheduler.step()
|
||||
|
||||
# Load the best model
|
||||
model.load_state_dict(torch.load(checkpoint_path))
|
||||
|
||||
# Final validation
|
||||
model.eval()
|
||||
final_val_loss = 0.0
|
||||
final_val_correct = 0
|
||||
final_val_total = 0
|
||||
|
||||
with torch.no_grad():
|
||||
for batch_data in dataloaders['val']:
|
||||
# Handle both cases: with and without time features
|
||||
if len(batch_data) == 4: # With time features
|
||||
inputs, targets, x_mark, y_mark = batch_data
|
||||
inputs, targets = inputs.float().to(device), targets.float().to(device)
|
||||
x_mark, y_mark = x_mark.float().to(device), y_mark.float().to(device)
|
||||
else: # Without time features
|
||||
inputs, targets = batch_data
|
||||
inputs, targets = inputs.float().to(device), targets.float().to(device)
|
||||
x_mark, y_mark = None, None
|
||||
|
||||
targets = targets.long()
|
||||
|
||||
# Forward pass - handle both cases
|
||||
if x_mark is not None:
|
||||
# For TimesNet model with time features
|
||||
dec_inp = torch.zeros_like(targets).to(device)
|
||||
outputs = model(inputs, x_mark, dec_inp, y_mark)
|
||||
else:
|
||||
# For simple models without time features
|
||||
outputs = model(inputs)
|
||||
|
||||
# Calculate loss
|
||||
loss = criterion(outputs, targets)
|
||||
final_val_loss += loss.item()
|
||||
|
||||
# Calculate accuracy
|
||||
_, predicted = outputs.max(1)
|
||||
final_val_total += targets.size(0)
|
||||
final_val_correct += predicted.eq(targets).sum().item()
|
||||
|
||||
final_val_loss /= len(dataloaders['val'])
|
||||
final_val_accuracy = 100. * final_val_correct / final_val_total
|
||||
|
||||
print(f"Final validation loss: {final_val_loss:.4f}")
|
||||
print(f"Final validation accuracy: {final_val_accuracy:.2f}%")
|
||||
|
||||
# Update metrics with final values
|
||||
metrics["final_val_loss"] = final_val_loss
|
||||
metrics["final_val_accuracy"] = final_val_accuracy
|
||||
|
||||
# Finish the swanlab run
|
||||
swanlab_run.finish()
|
||||
|
||||
return model, metrics
|
||||
|
||||
def main():
|
||||
# Example usage
|
||||
data_path = 'data/train_data.npz'
|
||||
project_name = 'TimeSeriesForecasting'
|
||||
config = {
|
||||
'learning_rate': 0.001,
|
||||
'batch_size': 32,
|
||||
'weight_decay': 1e-4
|
||||
}
|
||||
|
||||
model_constructor = lambda: nn.Sequential(
|
||||
nn.Linear(10, 50),
|
||||
nn.ReLU(),
|
||||
nn.Linear(50, 1)
|
||||
)
|
||||
|
||||
model, metrics = train_forecasting_model(
|
||||
model_constructor=model_constructor,
|
||||
data_path=data_path,
|
||||
project_name=project_name,
|
||||
config=config
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
209
train_test.py
Normal file
209
train_test.py
Normal file
@ -0,0 +1,209 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Training script for TimesNet model on ETT datasets.
|
||||
"""
|
||||
|
||||
import os
|
||||
import math
|
||||
import argparse
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from train.train import train_forecasting_model
|
||||
from models.TimesNet.TimesNet import Model as TimesNet
|
||||
|
||||
class Args:
|
||||
"""Configuration class for TimesNet model parameters."""
|
||||
def __init__(self, seq_len, pred_len, enc_in, c_out):
|
||||
# Model architecture parameters
|
||||
self.task_name = 'long_term_forecast'
|
||||
self.seq_len = seq_len
|
||||
self.label_len = seq_len // 2 # Half of seq_len as label length
|
||||
self.pred_len = pred_len
|
||||
self.enc_in = enc_in
|
||||
self.c_out = c_out
|
||||
|
||||
# TimesNet specific parameters
|
||||
self.top_k = 5 # k parameter as specified
|
||||
self.e_layers = 2 # Number of layers as specified
|
||||
self.d_min = 32 # dmin as specified
|
||||
self.d_max = 512 # dmax as specified
|
||||
|
||||
# Calculate d_model based on the formula: min{max{2*⌈log C⌉, dmin}, dmax}
|
||||
log_c = math.ceil(math.log2(enc_in)) if enc_in > 1 else 1
|
||||
# self.d_model = min(max(2 * log_c, self.d_min), self.d_max)
|
||||
self.d_model = 64
|
||||
|
||||
# Other model parameters
|
||||
self.d_ff = 64 # Standard transformer ratio
|
||||
self.num_kernels = 6 # For Inception blocks
|
||||
self.embed = 'timeF' # Time feature embedding type
|
||||
self.freq = 'h' # Frequency for time features (minutely for ETT)
|
||||
self.dropout = 0.1
|
||||
|
||||
print(f"Model configuration:")
|
||||
print(f" - Input channels (C): {enc_in}")
|
||||
print(f" - d_model: {self.d_model} (calculated from 2*⌈log₂({enc_in})⌉ = {2 * log_c})")
|
||||
print(f" - Sequence length: {seq_len}")
|
||||
print(f" - Prediction length: {pred_len}")
|
||||
print(f" - Top-k: {self.top_k}")
|
||||
print(f" - Layers: {self.e_layers}")
|
||||
|
||||
def create_timesnet_model(args):
|
||||
"""Create TimesNet model with given configuration."""
|
||||
def model_constructor():
|
||||
return TimesNet(args)
|
||||
return model_constructor
|
||||
|
||||
def train_single_dataset(data_path, dataset_name, pred_len, args):
|
||||
"""Train TimesNet on a single dataset configuration."""
|
||||
|
||||
# Update args for current prediction length
|
||||
args.pred_len = pred_len
|
||||
|
||||
# Create model constructor
|
||||
model_constructor = create_timesnet_model(args)
|
||||
|
||||
# Training configuration
|
||||
config = {
|
||||
'learning_rate': 1e-5, # LR = 10^-4 as specified
|
||||
'batch_size': 32, # BatchSize 32 as specified
|
||||
'weight_decay': 1e-4,
|
||||
'dataset': dataset_name,
|
||||
'pred_len': pred_len,
|
||||
'seq_len': args.seq_len,
|
||||
'd_model': args.d_model,
|
||||
'top_k': args.top_k,
|
||||
'e_layers': args.e_layers
|
||||
}
|
||||
|
||||
# Project name for tracking
|
||||
project_name = f"TimesNet_{dataset_name}_pred{pred_len}"
|
||||
|
||||
print(f"\n{'='*60}")
|
||||
print(f"Training {dataset_name} with prediction length {pred_len}")
|
||||
print(f"Data path: {data_path}")
|
||||
print(f"{'='*60}")
|
||||
|
||||
# Train the model
|
||||
try:
|
||||
model, metrics = train_forecasting_model(
|
||||
model_constructor=model_constructor,
|
||||
data_path=data_path,
|
||||
project_name=project_name,
|
||||
config=config,
|
||||
early_stopping_patience=10,
|
||||
max_epochs=10, # epochs 10 as specified
|
||||
checkpoint_dir="./checkpoints",
|
||||
log_interval=50
|
||||
)
|
||||
|
||||
print(f"Training completed for {project_name}")
|
||||
print(f"Final validation MSE: {metrics.get('final_val_loss', 'N/A'):.6f}")
|
||||
|
||||
return model, metrics
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error training {project_name}: {e}")
|
||||
return None, None
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description='Train TimesNet on ETT datasets')
|
||||
parser.add_argument('--data_dir', type=str, default='processed_data',
|
||||
help='Directory containing processed NPZ files')
|
||||
parser.add_argument('--datasets', nargs='+', default=['ETTm1', 'ETTm2'],
|
||||
help='List of datasets to train on')
|
||||
parser.add_argument('--pred_lengths', nargs='+', type=int, default=[96, 192, 336, 720],
|
||||
help='List of prediction lengths to train on')
|
||||
parser.add_argument('--seq_len', type=int, default=96,
|
||||
help='Input sequence length')
|
||||
parser.add_argument('--device', type=str, default=None,
|
||||
help='Device to use for training (cuda/cpu)')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
print("TimesNet Training Script")
|
||||
print("=" * 50)
|
||||
print(f"Datasets: {args.datasets}")
|
||||
print(f"Prediction lengths: {args.pred_lengths}")
|
||||
print(f"Input sequence length: {args.seq_len}")
|
||||
print(f"Data directory: {args.data_dir}")
|
||||
|
||||
# Check if data directory exists
|
||||
if not os.path.exists(args.data_dir):
|
||||
print(f"Error: Data directory '{args.data_dir}' not found!")
|
||||
return
|
||||
|
||||
# Set device
|
||||
if args.device is None:
|
||||
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||||
else:
|
||||
device = args.device
|
||||
print(f"Using device: {device}")
|
||||
|
||||
# Training results storage
|
||||
all_results = {}
|
||||
|
||||
# Train on each dataset and prediction length combination
|
||||
for dataset in args.datasets:
|
||||
all_results[dataset] = {}
|
||||
|
||||
for pred_len in args.pred_lengths:
|
||||
# Construct data file path
|
||||
data_file = f"{dataset}_input{args.seq_len}_pred{pred_len}.npz"
|
||||
data_path = os.path.join(args.data_dir, data_file)
|
||||
|
||||
# Check if data file exists
|
||||
if not os.path.exists(data_path):
|
||||
print(f"Warning: Data file '{data_path}' not found, skipping...")
|
||||
continue
|
||||
|
||||
# Load data to get input dimensions
|
||||
import numpy as np
|
||||
data = np.load(data_path, allow_pickle=True)
|
||||
enc_in = data['train_x'].shape[-1] # Number of features/channels
|
||||
print("输入数据通道数:", enc_in)
|
||||
c_out = enc_in # Output same number of channels
|
||||
|
||||
# Create model configuration
|
||||
model_args = Args(
|
||||
seq_len=args.seq_len,
|
||||
pred_len=pred_len,
|
||||
enc_in=enc_in,
|
||||
c_out=c_out
|
||||
)
|
||||
|
||||
# Train the model
|
||||
model, metrics = train_single_dataset(
|
||||
data_path=data_path,
|
||||
dataset_name=dataset,
|
||||
pred_len=pred_len,
|
||||
args=model_args
|
||||
)
|
||||
|
||||
# Store results
|
||||
all_results[dataset][pred_len] = {
|
||||
'model': model,
|
||||
'metrics': metrics,
|
||||
'data_path': data_path
|
||||
}
|
||||
|
||||
# Print summary
|
||||
print("\n" + "=" * 80)
|
||||
print("TRAINING SUMMARY")
|
||||
print("=" * 80)
|
||||
|
||||
for dataset in all_results:
|
||||
print(f"\n{dataset}:")
|
||||
for pred_len in all_results[dataset]:
|
||||
result = all_results[dataset][pred_len]
|
||||
if result['metrics'] is not None:
|
||||
mse = result['metrics'].get('final_val_mse', 'N/A')
|
||||
print(f" Pred Length {pred_len}: MSE = {mse}")
|
||||
else:
|
||||
print(f" Pred Length {pred_len}: Training failed")
|
||||
|
||||
print(f"\nAll models saved in: ./checkpoints/")
|
||||
print("Training completed!")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
1
utils/__init__.py
Normal file
1
utils/__init__.py
Normal file
@ -0,0 +1 @@
|
||||
# Utils package for time series modeling
|
148
utils/timefeatures.py
Normal file
148
utils/timefeatures.py
Normal file
@ -0,0 +1,148 @@
|
||||
# From: gluonts/src/gluonts/time_feature/_base.py
|
||||
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License").
|
||||
# You may not use this file except in compliance with the License.
|
||||
# A copy of the License is located at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# or in the "license" file accompanying this file. This file is distributed
|
||||
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
|
||||
# express or implied. See the License for the specific language governing
|
||||
# permissions and limitations under the License.
|
||||
|
||||
from typing import List
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from pandas.tseries import offsets
|
||||
from pandas.tseries.frequencies import to_offset
|
||||
|
||||
|
||||
class TimeFeature:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:
|
||||
pass
|
||||
|
||||
def __repr__(self):
|
||||
return self.__class__.__name__ + "()"
|
||||
|
||||
|
||||
class SecondOfMinute(TimeFeature):
|
||||
"""Minute of hour encoded as value between [-0.5, 0.5]"""
|
||||
|
||||
def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:
|
||||
return index.second / 59.0 - 0.5
|
||||
|
||||
|
||||
class MinuteOfHour(TimeFeature):
|
||||
"""Minute of hour encoded as value between [-0.5, 0.5]"""
|
||||
|
||||
def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:
|
||||
return index.minute / 59.0 - 0.5
|
||||
|
||||
|
||||
class HourOfDay(TimeFeature):
|
||||
"""Hour of day encoded as value between [-0.5, 0.5]"""
|
||||
|
||||
def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:
|
||||
return index.hour / 23.0 - 0.5
|
||||
|
||||
|
||||
class DayOfWeek(TimeFeature):
|
||||
"""Hour of day encoded as value between [-0.5, 0.5]"""
|
||||
|
||||
def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:
|
||||
return index.dayofweek / 6.0 - 0.5
|
||||
|
||||
|
||||
class DayOfMonth(TimeFeature):
|
||||
"""Day of month encoded as value between [-0.5, 0.5]"""
|
||||
|
||||
def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:
|
||||
return (index.day - 1) / 30.0 - 0.5
|
||||
|
||||
|
||||
class DayOfYear(TimeFeature):
|
||||
"""Day of year encoded as value between [-0.5, 0.5]"""
|
||||
|
||||
def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:
|
||||
return (index.dayofyear - 1) / 365.0 - 0.5
|
||||
|
||||
|
||||
class MonthOfYear(TimeFeature):
|
||||
"""Month of year encoded as value between [-0.5, 0.5]"""
|
||||
|
||||
def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:
|
||||
return (index.month - 1) / 11.0 - 0.5
|
||||
|
||||
|
||||
class WeekOfYear(TimeFeature):
|
||||
"""Week of year encoded as value between [-0.5, 0.5]"""
|
||||
|
||||
def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:
|
||||
return (index.isocalendar().week - 1) / 52.0 - 0.5
|
||||
|
||||
|
||||
def time_features_from_frequency_str(freq_str: str) -> List[TimeFeature]:
|
||||
"""
|
||||
Returns a list of time features that will be appropriate for the given frequency string.
|
||||
Parameters
|
||||
----------
|
||||
freq_str
|
||||
Frequency string of the form [multiple][granularity] such as "12H", "5min", "1D" etc.
|
||||
"""
|
||||
|
||||
features_by_offsets = {
|
||||
offsets.YearEnd: [],
|
||||
offsets.QuarterEnd: [MonthOfYear],
|
||||
offsets.MonthEnd: [MonthOfYear],
|
||||
offsets.Week: [DayOfMonth, WeekOfYear],
|
||||
offsets.Day: [DayOfWeek, DayOfMonth, DayOfYear],
|
||||
offsets.BusinessDay: [DayOfWeek, DayOfMonth, DayOfYear],
|
||||
offsets.Hour: [HourOfDay, DayOfWeek, DayOfMonth, DayOfYear],
|
||||
offsets.Minute: [
|
||||
MinuteOfHour,
|
||||
HourOfDay,
|
||||
DayOfWeek,
|
||||
DayOfMonth,
|
||||
DayOfYear,
|
||||
],
|
||||
offsets.Second: [
|
||||
SecondOfMinute,
|
||||
MinuteOfHour,
|
||||
HourOfDay,
|
||||
DayOfWeek,
|
||||
DayOfMonth,
|
||||
DayOfYear,
|
||||
],
|
||||
}
|
||||
|
||||
offset = to_offset(freq_str)
|
||||
|
||||
for offset_type, feature_classes in features_by_offsets.items():
|
||||
if isinstance(offset, offset_type):
|
||||
return [cls() for cls in feature_classes]
|
||||
|
||||
supported_freq_msg = f"""
|
||||
Unsupported frequency {freq_str}
|
||||
The following frequencies are supported:
|
||||
Y - yearly
|
||||
alias: A
|
||||
M - monthly
|
||||
W - weekly
|
||||
D - daily
|
||||
B - business days
|
||||
H - hourly
|
||||
T - minutely
|
||||
alias: min
|
||||
S - secondly
|
||||
"""
|
||||
raise RuntimeError(supported_freq_msg)
|
||||
|
||||
|
||||
def time_features(dates, freq='h'):
|
||||
return np.vstack([feat(dates) for feat in time_features_from_frequency_str(freq)])
|
Reference in New Issue
Block a user