first timesnet try
This commit is contained in:
1
utils/__init__.py
Normal file
1
utils/__init__.py
Normal file
@ -0,0 +1 @@
|
||||
# Utils package for time series modeling
|
148
utils/timefeatures.py
Normal file
148
utils/timefeatures.py
Normal file
@ -0,0 +1,148 @@
|
||||
# From: gluonts/src/gluonts/time_feature/_base.py
|
||||
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License").
|
||||
# You may not use this file except in compliance with the License.
|
||||
# A copy of the License is located at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# or in the "license" file accompanying this file. This file is distributed
|
||||
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
|
||||
# express or implied. See the License for the specific language governing
|
||||
# permissions and limitations under the License.
|
||||
|
||||
from typing import List
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from pandas.tseries import offsets
|
||||
from pandas.tseries.frequencies import to_offset
|
||||
|
||||
|
||||
class TimeFeature:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:
|
||||
pass
|
||||
|
||||
def __repr__(self):
|
||||
return self.__class__.__name__ + "()"
|
||||
|
||||
|
||||
class SecondOfMinute(TimeFeature):
|
||||
"""Minute of hour encoded as value between [-0.5, 0.5]"""
|
||||
|
||||
def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:
|
||||
return index.second / 59.0 - 0.5
|
||||
|
||||
|
||||
class MinuteOfHour(TimeFeature):
|
||||
"""Minute of hour encoded as value between [-0.5, 0.5]"""
|
||||
|
||||
def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:
|
||||
return index.minute / 59.0 - 0.5
|
||||
|
||||
|
||||
class HourOfDay(TimeFeature):
|
||||
"""Hour of day encoded as value between [-0.5, 0.5]"""
|
||||
|
||||
def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:
|
||||
return index.hour / 23.0 - 0.5
|
||||
|
||||
|
||||
class DayOfWeek(TimeFeature):
|
||||
"""Hour of day encoded as value between [-0.5, 0.5]"""
|
||||
|
||||
def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:
|
||||
return index.dayofweek / 6.0 - 0.5
|
||||
|
||||
|
||||
class DayOfMonth(TimeFeature):
|
||||
"""Day of month encoded as value between [-0.5, 0.5]"""
|
||||
|
||||
def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:
|
||||
return (index.day - 1) / 30.0 - 0.5
|
||||
|
||||
|
||||
class DayOfYear(TimeFeature):
|
||||
"""Day of year encoded as value between [-0.5, 0.5]"""
|
||||
|
||||
def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:
|
||||
return (index.dayofyear - 1) / 365.0 - 0.5
|
||||
|
||||
|
||||
class MonthOfYear(TimeFeature):
|
||||
"""Month of year encoded as value between [-0.5, 0.5]"""
|
||||
|
||||
def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:
|
||||
return (index.month - 1) / 11.0 - 0.5
|
||||
|
||||
|
||||
class WeekOfYear(TimeFeature):
|
||||
"""Week of year encoded as value between [-0.5, 0.5]"""
|
||||
|
||||
def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:
|
||||
return (index.isocalendar().week - 1) / 52.0 - 0.5
|
||||
|
||||
|
||||
def time_features_from_frequency_str(freq_str: str) -> List[TimeFeature]:
|
||||
"""
|
||||
Returns a list of time features that will be appropriate for the given frequency string.
|
||||
Parameters
|
||||
----------
|
||||
freq_str
|
||||
Frequency string of the form [multiple][granularity] such as "12H", "5min", "1D" etc.
|
||||
"""
|
||||
|
||||
features_by_offsets = {
|
||||
offsets.YearEnd: [],
|
||||
offsets.QuarterEnd: [MonthOfYear],
|
||||
offsets.MonthEnd: [MonthOfYear],
|
||||
offsets.Week: [DayOfMonth, WeekOfYear],
|
||||
offsets.Day: [DayOfWeek, DayOfMonth, DayOfYear],
|
||||
offsets.BusinessDay: [DayOfWeek, DayOfMonth, DayOfYear],
|
||||
offsets.Hour: [HourOfDay, DayOfWeek, DayOfMonth, DayOfYear],
|
||||
offsets.Minute: [
|
||||
MinuteOfHour,
|
||||
HourOfDay,
|
||||
DayOfWeek,
|
||||
DayOfMonth,
|
||||
DayOfYear,
|
||||
],
|
||||
offsets.Second: [
|
||||
SecondOfMinute,
|
||||
MinuteOfHour,
|
||||
HourOfDay,
|
||||
DayOfWeek,
|
||||
DayOfMonth,
|
||||
DayOfYear,
|
||||
],
|
||||
}
|
||||
|
||||
offset = to_offset(freq_str)
|
||||
|
||||
for offset_type, feature_classes in features_by_offsets.items():
|
||||
if isinstance(offset, offset_type):
|
||||
return [cls() for cls in feature_classes]
|
||||
|
||||
supported_freq_msg = f"""
|
||||
Unsupported frequency {freq_str}
|
||||
The following frequencies are supported:
|
||||
Y - yearly
|
||||
alias: A
|
||||
M - monthly
|
||||
W - weekly
|
||||
D - daily
|
||||
B - business days
|
||||
H - hourly
|
||||
T - minutely
|
||||
alias: min
|
||||
S - secondly
|
||||
"""
|
||||
raise RuntimeError(supported_freq_msg)
|
||||
|
||||
|
||||
def time_features(dates, freq='h'):
|
||||
return np.vstack([feat(dates) for feat in time_features_from_frequency_str(freq)])
|
Reference in New Issue
Block a user