first timesnet try
This commit is contained in:
60
layers/Conv_Blocks.py
Normal file
60
layers/Conv_Blocks.py
Normal file
@ -0,0 +1,60 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
class Inception_Block_V1(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, num_kernels=6, init_weight=True):
|
||||
super(Inception_Block_V1, self).__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.num_kernels = num_kernels
|
||||
kernels = []
|
||||
for i in range(self.num_kernels):
|
||||
kernels.append(nn.Conv2d(in_channels, out_channels, kernel_size=2 * i + 1, padding=i))
|
||||
self.kernels = nn.ModuleList(kernels)
|
||||
if init_weight:
|
||||
self._initialize_weights()
|
||||
|
||||
def _initialize_weights(self):
|
||||
for m in self.modules():
|
||||
if isinstance(m, nn.Conv2d):
|
||||
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
||||
if m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
|
||||
def forward(self, x):
|
||||
res_list = []
|
||||
for i in range(self.num_kernels):
|
||||
res_list.append(self.kernels[i](x))
|
||||
res = torch.stack(res_list, dim=-1).mean(-1)
|
||||
return res
|
||||
|
||||
|
||||
class Inception_Block_V2(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, num_kernels=6, init_weight=True):
|
||||
super(Inception_Block_V2, self).__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.num_kernels = num_kernels
|
||||
kernels = []
|
||||
for i in range(self.num_kernels // 2):
|
||||
kernels.append(nn.Conv2d(in_channels, out_channels, kernel_size=[1, 2 * i + 3], padding=[0, i + 1]))
|
||||
kernels.append(nn.Conv2d(in_channels, out_channels, kernel_size=[2 * i + 3, 1], padding=[i + 1, 0]))
|
||||
kernels.append(nn.Conv2d(in_channels, out_channels, kernel_size=1))
|
||||
self.kernels = nn.ModuleList(kernels)
|
||||
if init_weight:
|
||||
self._initialize_weights()
|
||||
|
||||
def _initialize_weights(self):
|
||||
for m in self.modules():
|
||||
if isinstance(m, nn.Conv2d):
|
||||
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
||||
if m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
|
||||
def forward(self, x):
|
||||
res_list = []
|
||||
for i in range(self.num_kernels // 2 * 2 + 1):
|
||||
res_list.append(self.kernels[i](x))
|
||||
res = torch.stack(res_list, dim=-1).mean(-1)
|
||||
return res
|
190
layers/Embed.py
Normal file
190
layers/Embed.py
Normal file
@ -0,0 +1,190 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.nn.utils import weight_norm
|
||||
import math
|
||||
|
||||
|
||||
class PositionalEmbedding(nn.Module):
|
||||
def __init__(self, d_model, max_len=5000):
|
||||
super(PositionalEmbedding, self).__init__()
|
||||
# Compute the positional encodings once in log space.
|
||||
pe = torch.zeros(max_len, d_model).float()
|
||||
pe.require_grad = False
|
||||
|
||||
position = torch.arange(0, max_len).float().unsqueeze(1)
|
||||
div_term = (torch.arange(0, d_model, 2).float()
|
||||
* -(math.log(10000.0) / d_model)).exp()
|
||||
|
||||
pe[:, 0::2] = torch.sin(position * div_term)
|
||||
pe[:, 1::2] = torch.cos(position * div_term)
|
||||
|
||||
pe = pe.unsqueeze(0)
|
||||
self.register_buffer('pe', pe)
|
||||
|
||||
def forward(self, x):
|
||||
return self.pe[:, :x.size(1)]
|
||||
|
||||
|
||||
class TokenEmbedding(nn.Module):
|
||||
def __init__(self, c_in, d_model):
|
||||
super(TokenEmbedding, self).__init__()
|
||||
padding = 1 if torch.__version__ >= '1.5.0' else 2
|
||||
self.tokenConv = nn.Conv1d(in_channels=c_in, out_channels=d_model,
|
||||
kernel_size=3, padding=padding, padding_mode='circular', bias=False)
|
||||
for m in self.modules():
|
||||
if isinstance(m, nn.Conv1d):
|
||||
nn.init.kaiming_normal_(
|
||||
m.weight, mode='fan_in', nonlinearity='leaky_relu')
|
||||
|
||||
def forward(self, x):
|
||||
x = self.tokenConv(x.permute(0, 2, 1)).transpose(1, 2)
|
||||
return x
|
||||
|
||||
|
||||
class FixedEmbedding(nn.Module):
|
||||
def __init__(self, c_in, d_model):
|
||||
super(FixedEmbedding, self).__init__()
|
||||
|
||||
w = torch.zeros(c_in, d_model).float()
|
||||
w.require_grad = False
|
||||
|
||||
position = torch.arange(0, c_in).float().unsqueeze(1)
|
||||
div_term = (torch.arange(0, d_model, 2).float()
|
||||
* -(math.log(10000.0) / d_model)).exp()
|
||||
|
||||
w[:, 0::2] = torch.sin(position * div_term)
|
||||
w[:, 1::2] = torch.cos(position * div_term)
|
||||
|
||||
self.emb = nn.Embedding(c_in, d_model)
|
||||
self.emb.weight = nn.Parameter(w, requires_grad=False)
|
||||
|
||||
def forward(self, x):
|
||||
return self.emb(x).detach()
|
||||
|
||||
|
||||
class TemporalEmbedding(nn.Module):
|
||||
def __init__(self, d_model, embed_type='fixed', freq='h'):
|
||||
super(TemporalEmbedding, self).__init__()
|
||||
|
||||
minute_size = 4
|
||||
hour_size = 24
|
||||
weekday_size = 7
|
||||
day_size = 32
|
||||
month_size = 13
|
||||
|
||||
Embed = FixedEmbedding if embed_type == 'fixed' else nn.Embedding
|
||||
if freq == 't':
|
||||
self.minute_embed = Embed(minute_size, d_model)
|
||||
self.hour_embed = Embed(hour_size, d_model)
|
||||
self.weekday_embed = Embed(weekday_size, d_model)
|
||||
self.day_embed = Embed(day_size, d_model)
|
||||
self.month_embed = Embed(month_size, d_model)
|
||||
|
||||
def forward(self, x):
|
||||
x = x.long()
|
||||
minute_x = self.minute_embed(x[:, :, 4]) if hasattr(
|
||||
self, 'minute_embed') else 0.
|
||||
hour_x = self.hour_embed(x[:, :, 3])
|
||||
weekday_x = self.weekday_embed(x[:, :, 2])
|
||||
day_x = self.day_embed(x[:, :, 1])
|
||||
month_x = self.month_embed(x[:, :, 0])
|
||||
|
||||
return hour_x + weekday_x + day_x + month_x + minute_x
|
||||
|
||||
|
||||
class TimeFeatureEmbedding(nn.Module):
|
||||
def __init__(self, d_model, embed_type='timeF', freq='h'):
|
||||
super(TimeFeatureEmbedding, self).__init__()
|
||||
|
||||
freq_map = {'h': 4, 't': 5, 's': 6,
|
||||
'm': 1, 'a': 1, 'w': 2, 'd': 3, 'b': 3}
|
||||
d_inp = freq_map[freq]
|
||||
self.embed = nn.Linear(d_inp, d_model, bias=False)
|
||||
|
||||
def forward(self, x):
|
||||
return self.embed(x)
|
||||
|
||||
|
||||
class DataEmbedding(nn.Module):
|
||||
def __init__(self, c_in, d_model, embed_type='fixed', freq='h', dropout=0.1):
|
||||
super(DataEmbedding, self).__init__()
|
||||
|
||||
self.value_embedding = TokenEmbedding(c_in=c_in, d_model=d_model)
|
||||
self.position_embedding = PositionalEmbedding(d_model=d_model)
|
||||
self.temporal_embedding = TemporalEmbedding(d_model=d_model, embed_type=embed_type,
|
||||
freq=freq) if embed_type != 'timeF' else TimeFeatureEmbedding(
|
||||
d_model=d_model, embed_type=embed_type, freq=freq)
|
||||
self.dropout = nn.Dropout(p=dropout)
|
||||
|
||||
def forward(self, x, x_mark):
|
||||
if x_mark is None:
|
||||
x = self.value_embedding(x) + self.position_embedding(x)
|
||||
else:
|
||||
x = self.value_embedding(
|
||||
x) + self.temporal_embedding(x_mark) + self.position_embedding(x)
|
||||
return self.dropout(x)
|
||||
|
||||
|
||||
class DataEmbedding_inverted(nn.Module):
|
||||
def __init__(self, c_in, d_model, embed_type='fixed', freq='h', dropout=0.1):
|
||||
super(DataEmbedding_inverted, self).__init__()
|
||||
self.value_embedding = nn.Linear(c_in, d_model)
|
||||
self.dropout = nn.Dropout(p=dropout)
|
||||
|
||||
def forward(self, x, x_mark):
|
||||
x = x.permute(0, 2, 1)
|
||||
# x: [Batch Variate Time]
|
||||
if x_mark is None:
|
||||
x = self.value_embedding(x)
|
||||
else:
|
||||
x = self.value_embedding(torch.cat([x, x_mark.permute(0, 2, 1)], 1))
|
||||
# x: [Batch Variate d_model]
|
||||
return self.dropout(x)
|
||||
|
||||
|
||||
class DataEmbedding_wo_pos(nn.Module):
|
||||
def __init__(self, c_in, d_model, embed_type='fixed', freq='h', dropout=0.1):
|
||||
super(DataEmbedding_wo_pos, self).__init__()
|
||||
|
||||
self.value_embedding = TokenEmbedding(c_in=c_in, d_model=d_model)
|
||||
self.position_embedding = PositionalEmbedding(d_model=d_model)
|
||||
self.temporal_embedding = TemporalEmbedding(d_model=d_model, embed_type=embed_type,
|
||||
freq=freq) if embed_type != 'timeF' else TimeFeatureEmbedding(
|
||||
d_model=d_model, embed_type=embed_type, freq=freq)
|
||||
self.dropout = nn.Dropout(p=dropout)
|
||||
|
||||
def forward(self, x, x_mark):
|
||||
if x_mark is None:
|
||||
x = self.value_embedding(x)
|
||||
else:
|
||||
x = self.value_embedding(x) + self.temporal_embedding(x_mark)
|
||||
return self.dropout(x)
|
||||
|
||||
|
||||
class PatchEmbedding(nn.Module):
|
||||
def __init__(self, d_model, patch_len, stride, padding, dropout):
|
||||
super(PatchEmbedding, self).__init__()
|
||||
# Patching
|
||||
self.patch_len = patch_len
|
||||
self.stride = stride
|
||||
self.padding_patch_layer = nn.ReplicationPad1d((0, padding))
|
||||
|
||||
# Backbone, Input encoding: projection of feature vectors onto a d-dim vector space
|
||||
self.value_embedding = nn.Linear(patch_len, d_model, bias=False)
|
||||
|
||||
# Positional embedding
|
||||
self.position_embedding = PositionalEmbedding(d_model)
|
||||
|
||||
# Residual dropout
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
def forward(self, x):
|
||||
# do patching
|
||||
n_vars = x.shape[1]
|
||||
x = self.padding_patch_layer(x)
|
||||
x = x.unfold(dimension=-1, size=self.patch_len, step=self.stride)
|
||||
x = torch.reshape(x, (x.shape[0] * x.shape[1], x.shape[2], x.shape[3]))
|
||||
# Input encoding
|
||||
x = self.value_embedding(x) + self.position_embedding(x)
|
||||
return self.dropout(x), n_vars
|
Reference in New Issue
Block a user