feat: add TimesNet_Q and xPatch models with Q matrix transformations
This commit is contained in:
58
models/xPatch/xPatch.py
Normal file
58
models/xPatch/xPatch.py
Normal file
@ -0,0 +1,58 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import math
|
||||
|
||||
from layers.decomp import DECOMP
|
||||
from .network import Network
|
||||
# from layers.network_mlp import NetworkMLP # For ablation study with MLP-only stream
|
||||
# from layers.network_cnn import NetworkCNN # For ablation study with CNN-only stream
|
||||
from layers.revin import RevIN
|
||||
|
||||
class Model(nn.Module):
|
||||
def __init__(self, configs):
|
||||
super(Model, self).__init__()
|
||||
|
||||
# Parameters
|
||||
seq_len = configs.seq_len # lookback window L
|
||||
pred_len = configs.pred_len # prediction length (96, 192, 336, 720)
|
||||
c_in = configs.enc_in # input channels
|
||||
|
||||
# Patching
|
||||
patch_len = configs.patch_len
|
||||
stride = configs.stride
|
||||
padding_patch = configs.padding_patch
|
||||
|
||||
# Normalization
|
||||
self.revin = configs.revin
|
||||
self.revin_layer = RevIN(c_in,affine=True,subtract_last=False)
|
||||
|
||||
# Moving Average
|
||||
self.ma_type = configs.ma_type
|
||||
alpha = configs.alpha # smoothing factor for EMA (Exponential Moving Average)
|
||||
beta = configs.beta # smoothing factor for DEMA (Double Exponential Moving Average)
|
||||
|
||||
self.decomp = DECOMP(self.ma_type, alpha, beta)
|
||||
self.net = Network(seq_len, pred_len, patch_len, stride, padding_patch)
|
||||
# self.net_mlp = NetworkMLP(seq_len, pred_len) # For ablation study with MLP-only stream
|
||||
# self.net_cnn = NetworkCNN(seq_len, pred_len, patch_len, stride, padding_patch) # For ablation study with CNN-only stream
|
||||
|
||||
def forward(self, x):
|
||||
# x: [Batch, Input, Channel]
|
||||
|
||||
# Normalization
|
||||
if self.revin:
|
||||
x = self.revin_layer(x, 'norm')
|
||||
|
||||
if self.ma_type == 'reg': # If no decomposition, directly pass the input to the network
|
||||
x = self.net(x, x)
|
||||
# x = self.net_mlp(x) # For ablation study with MLP-only stream
|
||||
# x = self.net_cnn(x) # For ablation study with CNN-only stream
|
||||
else:
|
||||
seasonal_init, trend_init = self.decomp(x)
|
||||
x = self.net(seasonal_init, trend_init)
|
||||
|
||||
# Denormalization
|
||||
if self.revin:
|
||||
x = self.revin_layer(x, 'denorm')
|
||||
|
||||
return x
|
Reference in New Issue
Block a user