feat: add TimesNet_Q and xPatch models with Q matrix transformations

This commit is contained in:
game-loader
2025-08-06 18:39:26 +08:00
parent 7fdf0f364d
commit 6bba6613c9
14 changed files with 872 additions and 3 deletions

View File

@ -3,8 +3,8 @@ import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from RevIN import RevIN
from Trans_EncDec import Encoder_ori, LinearEncoder
from ..RevIN import RevIN
from .Trans_EncDec import Encoder_ori, LinearEncoder

View File

@ -1 +1 @@
from model import *
from .model import *

View File

@ -0,0 +1,221 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.fft
import numpy as np
import os
from layers.Embed import DataEmbedding
from layers.Conv_Blocks import Inception_Block_V1
def FFT_for_Period(x, k=2):
# [B, T, C]
xf = torch.fft.rfft(x, dim=1)
# find period by amplitudes
frequency_list = abs(xf).mean(0).mean(-1)
frequency_list[0] = 0
_, top_list = torch.topk(frequency_list, k)
top_list = top_list.detach().cpu().numpy()
period = x.shape[1] // top_list
return period, abs(xf).mean(-1)[:, top_list]
class TimesBlock(nn.Module):
"""Original TimesBlock without Q matrix transformation"""
def __init__(self, configs):
super(TimesBlock, self).__init__()
self.seq_len = configs.seq_len
self.pred_len = configs.pred_len
self.k = configs.top_k
# parameter-efficient design
self.conv = nn.Sequential(
Inception_Block_V1(configs.d_model, configs.d_ff,
num_kernels=configs.num_kernels),
nn.GELU(),
Inception_Block_V1(configs.d_ff, configs.d_model,
num_kernels=configs.num_kernels)
)
def forward(self, x):
B, T, N = x.size()
period_list, period_weight = FFT_for_Period(x, self.k)
res = []
for i in range(self.k):
period = period_list[i]
# padding
if (self.seq_len + self.pred_len) % period != 0:
length = (
((self.seq_len + self.pred_len) // period) + 1) * period
padding = torch.zeros([x.shape[0], (length - (self.seq_len + self.pred_len)), x.shape[2]]).to(x.device)
out = torch.cat([x, padding], dim=1)
else:
length = (self.seq_len + self.pred_len)
out = x
# reshape
out = out.reshape(B, length // period, period,
N).permute(0, 3, 1, 2).contiguous()
# 2D conv: from 1d Variation to 2d Variation
out = self.conv(out)
# reshape back
out = out.permute(0, 2, 3, 1).reshape(B, -1, N)
res.append(out[:, :(self.seq_len + self.pred_len), :])
res = torch.stack(res, dim=-1)
# adaptive aggregation
period_weight = F.softmax(period_weight, dim=1)
period_weight = period_weight.unsqueeze(
1).unsqueeze(1).repeat(1, T, N, 1)
res = torch.sum(res * period_weight, -1)
# residual connection
res = res + x
return res
class Model(nn.Module):
"""
TimesNet with Q matrix transformation
- Applies input Q matrix transformation before embedding
- Uses original TimesBlock logic
- Applies output Q matrix transformation before De-Normalization
Only implements long/short term forecasting
"""
def __init__(self, configs):
super(Model, self).__init__()
self.configs = configs
self.task_name = configs.task_name
self.seq_len = configs.seq_len
self.label_len = configs.label_len
self.pred_len = configs.pred_len
# Load Q matrices
self.load_Q_matrices(configs)
# Model layers
self.model = nn.ModuleList([TimesBlock(configs)
for _ in range(configs.e_layers)])
self.enc_embedding = DataEmbedding(configs.enc_in, configs.d_model, configs.embed, configs.freq,
configs.dropout)
self.layer = configs.e_layers
self.layer_norm = nn.LayerNorm(configs.d_model)
# Only implement forecast-related layers
self.predict_linear = nn.Linear(
self.seq_len, self.pred_len + self.seq_len)
self.projection = nn.Linear(
configs.d_model, configs.c_out, bias=True)
def load_Q_matrices(self, configs):
"""Load pre-computed Q matrices for input and output transformations"""
# Get dataset name from configs, default to ETTm1 if not specified
dataset_name = getattr(configs, 'dataset', 'ETTm1')
# Input Q matrix (seq_len)
input_q_path = f'cov_mats/{dataset_name}/{dataset_name}_{configs.seq_len}_ratio1.0.npy'
# Output Q matrix (pred_len)
output_q_path = f'cov_mats/{dataset_name}/{dataset_name}_{configs.pred_len}_ratio1.0.npy'
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if os.path.exists(input_q_path):
Q_input = np.load(input_q_path)
self.register_buffer('Q_input', torch.FloatTensor(Q_input).to(device))
print(f"Loaded input Q matrix from {input_q_path}, shape: {Q_input.shape}")
else:
print(f"Warning: Input Q matrix not found at {input_q_path}, using identity matrix")
self.register_buffer('Q_input', torch.eye(configs.seq_len).to(device))
if os.path.exists(output_q_path):
Q_output = np.load(output_q_path)
self.register_buffer('Q_output', torch.FloatTensor(Q_output).to(device))
print(f"Loaded output Q matrix from {output_q_path}, shape: {Q_output.shape}")
else:
print(f"Warning: Output Q matrix not found at {output_q_path}, using identity matrix")
self.register_buffer('Q_output', torch.eye(configs.pred_len).to(device))
def apply_input_Q_transformation(self, x):
"""
Apply input Q matrix transformation before embedding
Input: x with shape [B, T, N] where T = seq_len
Output: transformed x with shape [B, T, N]
"""
B, T, N = x.size()
# Transpose to [B, N, T] for matrix multiplication
x_transposed = x.transpose(-1, -2) # [B, N, T]
# Apply input Q transformation: einsum 'bnt,tv->bnv'
# x_transposed: [B, N, T], Q_input.T: [T, T] -> result: [B, N, T]
x_trans = torch.einsum('bnt,tv->bnv', x_transposed, self.Q_input.transpose(-1, -2))
# Transpose back to [B, T, N]
x_transformed = x_trans.transpose(-1, -2) # [B, T, N]
return x_transformed
def apply_output_Q_transformation(self, x):
"""
Apply output Q matrix transformation to prediction output
Input: x with shape [B, pred_len, N]
Output: transformed x with shape [B, pred_len, N]
"""
B, T, N = x.size()
assert T == self.pred_len, f"Expected pred_len {self.pred_len}, got {T}"
# Transpose to [B, N, T] for matrix multiplication
x_transposed = x.transpose(-1, -2) # [B, N, pred_len]
# Apply output Q transformation: einsum 'bnt,tv->bnv'
# x_transposed: [B, N, pred_len], Q_output: [pred_len, pred_len] -> result: [B, N, pred_len]
x_trans = torch.einsum('bnt,tv->bnv', x_transposed, self.Q_output)
# Transpose back to [B, pred_len, N]
x_transformed = x_trans.transpose(-1, -2) # [B, pred_len, N]
return x_transformed
def forecast(self, x_enc, x_mark_enc, x_dec, x_mark_dec):
# Normalization from Non-stationary Transformer
means = x_enc.mean(1, keepdim=True).detach()
x_enc = x_enc.sub(means)
stdev = torch.sqrt(
torch.var(x_enc, dim=1, keepdim=True, unbiased=False) + 1e-5)
x_enc = x_enc.div(stdev)
# Apply input Q matrix transformation before embedding
x_enc_transformed = self.apply_input_Q_transformation(x_enc)
# embedding with transformed input
enc_out = self.enc_embedding(x_enc_transformed, x_mark_enc) # [B,T,C]
enc_out = self.predict_linear(enc_out.permute(0, 2, 1)).permute(
0, 2, 1) # align temporal dimension
# TimesNet blocks (original logic, no Q transformation)
for i in range(self.layer):
enc_out = self.layer_norm(self.model[i](enc_out))
# project back
dec_out = self.projection(enc_out)
# Extract prediction part and apply output Q transformation
pred_out = dec_out[:, -self.pred_len:, :] # [B, pred_len, N]
pred_out_transformed = self.apply_output_Q_transformation(pred_out)
# De-Normalization from Non-stationary Transformer
pred_out_transformed = pred_out_transformed.mul(
(stdev[:, 0, :].unsqueeze(1).repeat(
1, self.pred_len, 1)))
pred_out_transformed = pred_out_transformed.add(
(means[:, 0, :].unsqueeze(1).repeat(
1, self.pred_len, 1)))
return pred_out_transformed
def forward(self, x_enc, x_mark_enc=None, x_dec=None, x_mark_dec=None, mask=None):
# Only support long_term_forecast and short_term_forecast
if self.task_name == 'long_term_forecast' or self.task_name == 'short_term_forecast':
dec_out = self.forecast(x_enc, x_mark_enc, x_dec, x_mark_dec)
return dec_out # [B, pred_len, D]
else:
raise NotImplementedError(f"Task {self.task_name} is not implemented in TimesNet_Q")
return None

View File

@ -0,0 +1,3 @@
from .TimesNet_Q import Model
__all__ = ['Model']

132
models/xPatch/network.py Normal file
View File

@ -0,0 +1,132 @@
import torch
from torch import nn
class Network(nn.Module):
def __init__(self, seq_len, pred_len, patch_len, stride, padding_patch):
super(Network, self).__init__()
# Parameters
self.pred_len = pred_len
# Non-linear Stream
# Patching
self.patch_len = patch_len
self.stride = stride
self.padding_patch = padding_patch
self.dim = patch_len * patch_len
self.patch_num = (seq_len - patch_len)//stride + 1
if padding_patch == 'end': # can be modified to general case
self.padding_patch_layer = nn.ReplicationPad1d((0, stride))
self.patch_num += 1
# Patch Embedding
self.fc1 = nn.Linear(patch_len, self.dim)
self.gelu1 = nn.GELU()
self.bn1 = nn.BatchNorm1d(self.patch_num)
# CNN Depthwise
self.conv1 = nn.Conv1d(self.patch_num, self.patch_num,
patch_len, patch_len, groups=self.patch_num)
self.gelu2 = nn.GELU()
self.bn2 = nn.BatchNorm1d(self.patch_num)
# Residual Stream
self.fc2 = nn.Linear(self.dim, patch_len)
# CNN Pointwise
self.conv2 = nn.Conv1d(self.patch_num, self.patch_num, 1, 1)
self.gelu3 = nn.GELU()
self.bn3 = nn.BatchNorm1d(self.patch_num)
# Flatten Head
self.flatten1 = nn.Flatten(start_dim=-2)
self.fc3 = nn.Linear(self.patch_num * patch_len, pred_len * 2)
self.gelu4 = nn.GELU()
self.fc4 = nn.Linear(pred_len * 2, pred_len)
# Linear Stream
# MLP
self.fc5 = nn.Linear(seq_len, pred_len * 4)
self.avgpool1 = nn.AvgPool1d(kernel_size=2)
self.ln1 = nn.LayerNorm(pred_len * 2)
self.fc6 = nn.Linear(pred_len * 2, pred_len)
self.avgpool2 = nn.AvgPool1d(kernel_size=2)
self.ln2 = nn.LayerNorm(pred_len // 2)
self.fc7 = nn.Linear(pred_len // 2, pred_len)
# Streams Concatination
self.fc8 = nn.Linear(pred_len * 2, pred_len)
def forward(self, s, t):
# x: [Batch, Input, Channel]
# s - seasonality
# t - trend
s = s.permute(0,2,1) # to [Batch, Channel, Input]
t = t.permute(0,2,1) # to [Batch, Channel, Input]
# Channel split for channel independence
B = s.shape[0] # Batch size
C = s.shape[1] # Channel size
I = s.shape[2] # Input size
s = torch.reshape(s, (B*C, I)) # [Batch and Channel, Input]
t = torch.reshape(t, (B*C, I)) # [Batch and Channel, Input]
# Non-linear Stream
# Patching
if self.padding_patch == 'end':
s = self.padding_patch_layer(s)
s = s.unfold(dimension=-1, size=self.patch_len, step=self.stride)
# s: [Batch and Channel, Patch_num, Patch_len]
# Patch Embedding
s = self.fc1(s)
s = self.gelu1(s)
s = self.bn1(s)
res = s
# CNN Depthwise
s = self.conv1(s)
s = self.gelu2(s)
s = self.bn2(s)
# Residual Stream
res = self.fc2(res)
s = s + res
# CNN Pointwise
s = self.conv2(s)
s = self.gelu3(s)
s = self.bn3(s)
# Flatten Head
s = self.flatten1(s)
s = self.fc3(s)
s = self.gelu4(s)
s = self.fc4(s)
# Linear Stream
# MLP
t = self.fc5(t)
t = self.avgpool1(t)
t = self.ln1(t)
t = self.fc6(t)
t = self.avgpool2(t)
t = self.ln2(t)
t = self.fc7(t)
# Streams Concatination
x = torch.cat((s, t), dim=1)
x = self.fc8(x)
# Channel concatination
x = torch.reshape(x, (B, C, self.pred_len)) # [Batch, Channel, Output]
x = x.permute(0,2,1) # to [Batch, Output, Channel]
return x

58
models/xPatch/xPatch.py Normal file
View File

@ -0,0 +1,58 @@
import torch
import torch.nn as nn
import math
from layers.decomp import DECOMP
from .network import Network
# from layers.network_mlp import NetworkMLP # For ablation study with MLP-only stream
# from layers.network_cnn import NetworkCNN # For ablation study with CNN-only stream
from layers.revin import RevIN
class Model(nn.Module):
def __init__(self, configs):
super(Model, self).__init__()
# Parameters
seq_len = configs.seq_len # lookback window L
pred_len = configs.pred_len # prediction length (96, 192, 336, 720)
c_in = configs.enc_in # input channels
# Patching
patch_len = configs.patch_len
stride = configs.stride
padding_patch = configs.padding_patch
# Normalization
self.revin = configs.revin
self.revin_layer = RevIN(c_in,affine=True,subtract_last=False)
# Moving Average
self.ma_type = configs.ma_type
alpha = configs.alpha # smoothing factor for EMA (Exponential Moving Average)
beta = configs.beta # smoothing factor for DEMA (Double Exponential Moving Average)
self.decomp = DECOMP(self.ma_type, alpha, beta)
self.net = Network(seq_len, pred_len, patch_len, stride, padding_patch)
# self.net_mlp = NetworkMLP(seq_len, pred_len) # For ablation study with MLP-only stream
# self.net_cnn = NetworkCNN(seq_len, pred_len, patch_len, stride, padding_patch) # For ablation study with CNN-only stream
def forward(self, x):
# x: [Batch, Input, Channel]
# Normalization
if self.revin:
x = self.revin_layer(x, 'norm')
if self.ma_type == 'reg': # If no decomposition, directly pass the input to the network
x = self.net(x, x)
# x = self.net_mlp(x) # For ablation study with MLP-only stream
# x = self.net_cnn(x) # For ablation study with CNN-only stream
else:
seasonal_init, trend_init = self.decomp(x)
x = self.net(seasonal_init, trend_init)
# Denormalization
if self.revin:
x = self.revin_layer(x, 'denorm')
return x

View File

@ -0,0 +1 @@
from .xPatch_Q import Model

132
models/xPatch_Q/network.py Normal file
View File

@ -0,0 +1,132 @@
import torch
from torch import nn
class Network(nn.Module):
def __init__(self, seq_len, pred_len, patch_len, stride, padding_patch):
super(Network, self).__init__()
# Parameters
self.pred_len = pred_len
# Non-linear Stream
# Patching
self.patch_len = patch_len
self.stride = stride
self.padding_patch = padding_patch
self.dim = patch_len * patch_len
self.patch_num = (seq_len - patch_len)//stride + 1
if padding_patch == 'end': # can be modified to general case
self.padding_patch_layer = nn.ReplicationPad1d((0, stride))
self.patch_num += 1
# Patch Embedding
self.fc1 = nn.Linear(patch_len, self.dim)
self.gelu1 = nn.GELU()
self.bn1 = nn.BatchNorm1d(self.patch_num)
# CNN Depthwise
self.conv1 = nn.Conv1d(self.patch_num, self.patch_num,
patch_len, patch_len, groups=self.patch_num)
self.gelu2 = nn.GELU()
self.bn2 = nn.BatchNorm1d(self.patch_num)
# Residual Stream
self.fc2 = nn.Linear(self.dim, patch_len)
# CNN Pointwise
self.conv2 = nn.Conv1d(self.patch_num, self.patch_num, 1, 1)
self.gelu3 = nn.GELU()
self.bn3 = nn.BatchNorm1d(self.patch_num)
# Flatten Head
self.flatten1 = nn.Flatten(start_dim=-2)
self.fc3 = nn.Linear(self.patch_num * patch_len, pred_len * 2)
self.gelu4 = nn.GELU()
self.fc4 = nn.Linear(pred_len * 2, pred_len)
# Linear Stream
# MLP
self.fc5 = nn.Linear(seq_len, pred_len * 4)
self.avgpool1 = nn.AvgPool1d(kernel_size=2)
self.ln1 = nn.LayerNorm(pred_len * 2)
self.fc6 = nn.Linear(pred_len * 2, pred_len)
self.avgpool2 = nn.AvgPool1d(kernel_size=2)
self.ln2 = nn.LayerNorm(pred_len // 2)
self.fc7 = nn.Linear(pred_len // 2, pred_len)
# Streams Concatination
self.fc8 = nn.Linear(pred_len * 2, pred_len)
def forward(self, s, t):
# x: [Batch, Input, Channel]
# s - seasonality
# t - trend
s = s.permute(0,2,1) # to [Batch, Channel, Input]
t = t.permute(0,2,1) # to [Batch, Channel, Input]
# Channel split for channel independence
B = s.shape[0] # Batch size
C = s.shape[1] # Channel size
I = s.shape[2] # Input size
s = torch.reshape(s, (B*C, I)) # [Batch and Channel, Input]
t = torch.reshape(t, (B*C, I)) # [Batch and Channel, Input]
# Non-linear Stream
# Patching
if self.padding_patch == 'end':
s = self.padding_patch_layer(s)
s = s.unfold(dimension=-1, size=self.patch_len, step=self.stride)
# s: [Batch and Channel, Patch_num, Patch_len]
# Patch Embedding
s = self.fc1(s)
s = self.gelu1(s)
s = self.bn1(s)
res = s
# CNN Depthwise
s = self.conv1(s)
s = self.gelu2(s)
s = self.bn2(s)
# Residual Stream
res = self.fc2(res)
s = s + res
# CNN Pointwise
s = self.conv2(s)
s = self.gelu3(s)
s = self.bn3(s)
# Flatten Head
s = self.flatten1(s)
s = self.fc3(s)
s = self.gelu4(s)
s = self.fc4(s)
# Linear Stream
# MLP
t = self.fc5(t)
t = self.avgpool1(t)
t = self.ln1(t)
t = self.fc6(t)
t = self.avgpool2(t)
t = self.ln2(t)
t = self.fc7(t)
# Streams Concatination
x = torch.cat((s, t), dim=1)
x = self.fc8(x)
# Channel concatination
x = torch.reshape(x, (B, C, self.pred_len)) # [Batch, Channel, Output]
x = x.permute(0,2,1) # to [Batch, Output, Channel]
return x

146
models/xPatch_Q/xPatch_Q.py Normal file
View File

@ -0,0 +1,146 @@
import torch
import torch.nn as nn
import math
import numpy as np
import os
from layers.decomp import DECOMP
from .network import Network
from layers.revin import RevIN
class Model(nn.Module):
"""
xPatch with Q matrix transformation
- Applies RevIN normalization first
- Applies input Q matrix transformation after RevIN normalization (based on dataset and seq_len)
- Uses original xPatch logic (decomposition + dual stream network)
- Applies output Q matrix transformation before RevIN denormalization (based on dataset and pred_len)
"""
def __init__(self, configs):
super(Model, self).__init__()
# Parameters
seq_len = configs.seq_len # lookback window L
pred_len = configs.pred_len # prediction length (96, 192, 336, 720)
c_in = configs.enc_in # input channels
# Patching
patch_len = configs.patch_len
stride = configs.stride
padding_patch = configs.padding_patch
# Store for Q matrix transformations
self.seq_len = seq_len
self.pred_len = pred_len
# Load Q matrices
self.load_Q_matrices(configs)
# Normalization
self.revin = configs.revin
self.revin_layer = RevIN(c_in, affine=True, subtract_last=False)
# Moving Average
self.ma_type = configs.ma_type
alpha = configs.alpha # smoothing factor for EMA (Exponential Moving Average)
beta = configs.beta # smoothing factor for DEMA (Double Exponential Moving Average)
self.decomp = DECOMP(self.ma_type, alpha, beta)
self.net = Network(seq_len, pred_len, patch_len, stride, padding_patch)
def load_Q_matrices(self, configs):
"""Load pre-computed Q matrices for input and output transformations"""
# Get dataset name from configs, default to ETTm1 if not specified
dataset_name = getattr(configs, 'dataset', 'ETTm1')
# Input Q matrix (seq_len)
input_q_path = f'cov_mats/{dataset_name}/{dataset_name}_{configs.seq_len}_ratio1.0.npy'
# Output Q matrix (pred_len)
output_q_path = f'cov_mats/{dataset_name}/{dataset_name}_{configs.pred_len}_ratio1.0.npy'
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if os.path.exists(input_q_path):
Q_input = np.load(input_q_path)
self.register_buffer('Q_input', torch.FloatTensor(Q_input).to(device))
print(f"Loaded input Q matrix from {input_q_path}, shape: {Q_input.shape}")
else:
print(f"Warning: Input Q matrix not found at {input_q_path}, using identity matrix")
self.register_buffer('Q_input', torch.eye(configs.seq_len).to(device))
if os.path.exists(output_q_path):
Q_output = np.load(output_q_path)
self.register_buffer('Q_output', torch.FloatTensor(Q_output).to(device))
print(f"Loaded output Q matrix from {output_q_path}, shape: {Q_output.shape}")
else:
print(f"Warning: Output Q matrix not found at {output_q_path}, using identity matrix")
self.register_buffer('Q_output', torch.eye(configs.pred_len).to(device))
def apply_input_Q_transformation(self, x):
"""
Apply input Q matrix transformation after RevIN normalization
Input: x with shape [B, T, N] where T = seq_len
Output: transformed x with shape [B, T, N]
"""
B, T, N = x.size()
assert T == self.seq_len, f"Expected seq_len {self.seq_len}, got {T}"
# Transpose to [B, N, T] for matrix multiplication
x_transposed = x.transpose(-1, -2) # [B, N, T]
# Apply input Q transformation: einsum 'bnt,tv->bnv'
# x_transposed: [B, N, T], Q_input.T: [T, T] -> result: [B, N, T]
x_trans = torch.einsum('bnt,tv->bnv', x_transposed, self.Q_input.transpose(-1, -2))
# Transpose back to [B, T, N]
x_transformed = x_trans.transpose(-1, -2) # [B, T, N]
return x_transformed
def apply_output_Q_transformation(self, x):
"""
Apply output Q matrix transformation to prediction output
Input: x with shape [B, pred_len, N]
Output: transformed x with shape [B, pred_len, N]
"""
B, T, N = x.size()
assert T == self.pred_len, f"Expected pred_len {self.pred_len}, got {T}"
# Transpose to [B, N, T] for matrix multiplication
x_transposed = x.transpose(-1, -2) # [B, N, pred_len]
# Apply output Q transformation: einsum 'bnt,tv->bnv'
# x_transposed: [B, N, pred_len], Q_output: [pred_len, pred_len] -> result: [B, N, pred_len]
x_trans = torch.einsum('bnt,tv->bnv', x_transposed, self.Q_output)
# Transpose back to [B, pred_len, N]
x_transformed = x_trans.transpose(-1, -2) # [B, pred_len, N]
return x_transformed
def forward(self, x):
# x: [Batch, Input, Channel]
# RevIN Normalization
if self.revin:
x = self.revin_layer(x, 'norm')
# Apply input Q matrix transformation after RevIN normalization
x_transformed = self.apply_input_Q_transformation(x)
# xPatch processing with Q-transformed input
if self.ma_type == 'reg': # If no decomposition, directly pass the input to the network
output = self.net(x_transformed, x_transformed)
else:
seasonal_init, trend_init = self.decomp(x_transformed)
output = self.net(seasonal_init, trend_init)
# Apply output Q matrix transformation to the prediction
output_transformed = self.apply_output_Q_transformation(output)
# RevIN Denormalization
if self.revin:
output_transformed = self.revin_layer(output_transformed, 'denorm')
return output_transformed