feat: add TimesNet_Q and xPatch models with Q matrix transformations

This commit is contained in:
game-loader
2025-08-06 18:39:26 +08:00
parent 7fdf0f364d
commit 6bba6613c9
14 changed files with 872 additions and 3 deletions

61
layers/revin.py Normal file
View File

@ -0,0 +1,61 @@
import torch
from torch import nn
class RevIN(nn.Module):
def __init__(self, num_features: int, eps=1e-5, affine=True, subtract_last=False):
"""
:param num_features: the number of features or channels
:param eps: a value added for numerical stability
:param affine: if True, RevIN has learnable affine parameters
"""
super(RevIN, self).__init__()
self.num_features = num_features
self.eps = eps
self.affine = affine
self.subtract_last = subtract_last
if self.affine:
self._init_params()
def forward(self, x, mode:str):
if mode == 'norm':
self._get_statistics(x)
x = self._normalize(x)
elif mode == 'denorm':
x = self._denormalize(x)
else: raise NotImplementedError
return x
def _init_params(self):
# initialize RevIN params: (C,)
self.affine_weight = nn.Parameter(torch.ones(self.num_features))
self.affine_bias = nn.Parameter(torch.zeros(self.num_features))
def _get_statistics(self, x):
dim2reduce = tuple(range(1, x.ndim-1))
if self.subtract_last:
self.last = x[:,-1,:].unsqueeze(1)
else:
self.mean = torch.mean(x, dim=dim2reduce, keepdim=True).detach()
self.stdev = torch.sqrt(torch.var(x, dim=dim2reduce, keepdim=True, unbiased=False) + self.eps).detach()
def _normalize(self, x):
if self.subtract_last:
x = x - self.last
else:
x = x - self.mean
x = x / self.stdev
if self.affine:
x = x * self.affine_weight
x = x + self.affine_bias
return x
def _denormalize(self, x):
if self.affine:
x = x - self.affine_bias
x = x / (self.affine_weight + self.eps*self.eps)
x = x * self.stdev
if self.subtract_last:
x = x + self.last
else:
x =x + self.mean
return x