feat: add TimesNet_Q and xPatch models with Q matrix transformations

This commit is contained in:
game-loader
2025-08-06 18:39:26 +08:00
parent 7fdf0f364d
commit 6bba6613c9
14 changed files with 872 additions and 3 deletions

27
layers/dema.py Normal file
View File

@ -0,0 +1,27 @@
import torch
from torch import nn
class DEMA(nn.Module):
"""
Double Exponential Moving Average (DEMA) block to highlight the trend of time series
"""
def __init__(self, alpha, beta):
super(DEMA, self).__init__()
# self.alpha = nn.Parameter(alpha) # Learnable alpha
# self.beta = nn.Parameter(beta) # Learnable beta
self.alpha = alpha.to(device='cuda')
self.beta = beta.to(device='cuda')
def forward(self, x):
# self.alpha.data.clamp_(0, 1) # Clamp learnable alpha to [0, 1]
# self.beta.data.clamp_(0, 1) # Clamp learnable beta to [0, 1]
s_prev = x[:, 0, :]
b = x[:, 1, :] - s_prev
res = [s_prev.unsqueeze(1)]
for t in range(1, x.shape[1]):
xt = x[:, t, :]
s = self.alpha * xt + (1 - self.alpha) * (s_prev + b)
b = self.beta * (s - s_prev) + (1 - self.beta) * b
s_prev = s
res.append(s.unsqueeze(1))
return torch.cat(res, dim=1)