151 lines
5.6 KiB
Python
151 lines
5.6 KiB
Python
from typing import Dict, Any, Tuple
|
|
import base64
|
|
import threading
|
|
from haystack import Document, Pipeline
|
|
from milvus_haystack import MilvusDocumentStore
|
|
from haystack.components.embedders import OpenAIDocumentEmbedder
|
|
from haystack.utils import Secret
|
|
|
|
import sys
|
|
import os
|
|
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
|
|
|
from config import (
|
|
DEFAULT_USER_ID,
|
|
OPENAI_EMBEDDING_KEY,
|
|
OPENAI_EMBEDDING_MODEL,
|
|
OPENAI_EMBEDDING_BASE,
|
|
)
|
|
from haystack_rag.rag_pipeline import build_rag_pipeline
|
|
from doubao_tts import text_to_speech
|
|
|
|
|
|
class ChatService:
|
|
def __init__(self, user_id: str = None):
|
|
self.user_id = user_id or DEFAULT_USER_ID
|
|
self.rag_pipeline = None
|
|
self.document_store = None
|
|
self.document_embedder = None
|
|
self._initialized = False
|
|
|
|
def initialize(self):
|
|
"""初始化 RAG 管道和相关组件"""
|
|
if self._initialized:
|
|
return
|
|
|
|
# 构建 RAG 查询管道和获取 DocumentStore 实例
|
|
self.rag_pipeline, self.document_store = build_rag_pipeline(self.user_id)
|
|
|
|
# 初始化用于写入用户输入的 Document Embedder
|
|
self.document_embedder = OpenAIDocumentEmbedder(
|
|
api_key=Secret.from_token(OPENAI_EMBEDDING_KEY),
|
|
model=OPENAI_EMBEDDING_MODEL,
|
|
api_base_url=OPENAI_EMBEDDING_BASE,
|
|
)
|
|
|
|
self._initialized = True
|
|
|
|
def _embed_and_store_async(self, user_input: str):
|
|
"""异步嵌入并存储用户输入"""
|
|
try:
|
|
# 步骤 1: 嵌入用户输入并写入 Milvus
|
|
user_doc_to_write = Document(content=user_input, meta={"user_id": self.user_id})
|
|
|
|
# 使用 OpenAIDocumentEmbedder 运行嵌入
|
|
embedding_result = self.document_embedder.run([user_doc_to_write])
|
|
embedded_docs = embedding_result.get("documents", [])
|
|
|
|
if embedded_docs:
|
|
# 将带有嵌入的文档写入 DocumentStore
|
|
self.document_store.write_documents(embedded_docs)
|
|
print(f"[INFO] 用户输入已成功嵌入并存储: {user_input[:50]}...")
|
|
else:
|
|
print(f"[WARNING] 用户输入嵌入失败: {user_input[:50]}...")
|
|
|
|
except Exception as e:
|
|
print(f"[ERROR] 异步嵌入和存储过程出错: {e}")
|
|
|
|
def chat(self, user_input: str, include_audio: bool = True) -> Dict[str, Any]:
|
|
"""处理用户输入并返回回复(包含音频)"""
|
|
if not self._initialized:
|
|
self.initialize()
|
|
|
|
try:
|
|
# 步骤 1: 异步启动嵌入和存储过程(不阻塞主流程)
|
|
embedding_thread = threading.Thread(
|
|
target=self._embed_and_store_async,
|
|
args=(user_input,),
|
|
daemon=True
|
|
)
|
|
embedding_thread.start()
|
|
|
|
# 步骤 2: 立即使用 RAG 查询管道生成回复(不等待嵌入完成)
|
|
pipeline_input = {
|
|
"text_embedder": {"text": user_input},
|
|
"prompt_builder": {"query": user_input},
|
|
}
|
|
|
|
# 运行 RAG 查询管道
|
|
results = self.rag_pipeline.run(pipeline_input)
|
|
|
|
# 步骤 3: 处理并返回结果
|
|
if "llm" in results and results["llm"]["replies"]:
|
|
answer = results["llm"]["replies"][0]
|
|
|
|
# 尝试获取 token 使用量
|
|
total_tokens = None
|
|
try:
|
|
if (
|
|
"meta" in results["llm"]
|
|
and isinstance(results["llm"]["meta"], list)
|
|
and results["llm"]["meta"]
|
|
):
|
|
usage_info = results["llm"]["meta"][0].get("usage", {})
|
|
total_tokens = usage_info.get("total_tokens")
|
|
except Exception:
|
|
pass
|
|
|
|
# 步骤 4: 生成语音(如果需要)
|
|
audio_data = None
|
|
audio_error = None
|
|
if include_audio:
|
|
try:
|
|
success, message, base64_audio = text_to_speech(answer, self.user_id)
|
|
if success and base64_audio:
|
|
# 直接使用 base64 音频数据
|
|
audio_data = base64_audio
|
|
else:
|
|
audio_error = message
|
|
except Exception as e:
|
|
audio_error = f"TTS错误: {str(e)}"
|
|
|
|
result = {
|
|
"success": True,
|
|
"response": answer,
|
|
"user_id": self.user_id
|
|
}
|
|
|
|
# 添加可选字段
|
|
if total_tokens is not None:
|
|
result["tokens"] = total_tokens
|
|
if audio_data:
|
|
result["audio_data"] = audio_data
|
|
if audio_error:
|
|
result["audio_error"] = audio_error
|
|
|
|
return result
|
|
else:
|
|
return {
|
|
"success": False,
|
|
"error": "Could not generate an answer",
|
|
"debug_info": results,
|
|
"user_id": self.user_id
|
|
}
|
|
|
|
except Exception as e:
|
|
return {
|
|
"success": False,
|
|
"error": str(e),
|
|
"user_id": self.user_id
|
|
}
|