Add configurable dt sampling and loss toggles

This commit is contained in:
gameloader
2026-01-21 15:14:04 +08:00
parent c58a73ae26
commit cac3236f9d
3 changed files with 207 additions and 41 deletions

View File

@@ -25,15 +25,18 @@ class TrainConfig:
batch_size: int = 128
steps_per_epoch: int = 50
epochs: int = 60
warmup_epochs: int = 15
seq_len: int = 20
lr: float = 1e-3
weight_decay: float = 1e-2
dt_min: float = 1e-3
dt_max: float = 0.06
dt_alpha: float = 8.0
lambda_flow: float = 1.0
lambda_pos: float = 1.0
lambda_nfe: float = 0.05
lambda_dt: float = 0.05
use_flow_loss: bool = True
use_pos_loss: bool = False
use_dt_loss: bool = True
radius_min: float = 0.6
radius_max: float = 1.4
center_min: float = -6.0
@@ -53,7 +56,7 @@ class TrainConfig:
val_every: int = 200
val_samples: int = 256
val_plot_samples: int = 16
val_max_steps: int = 100
val_max_steps: int = 0
class Mamba2Backbone(nn.Module):
@@ -221,21 +224,41 @@ def sample_sphere_params(cfg: TrainConfig, device: torch.device) -> tuple[Tensor
)
def sample_time_sequence(cfg: TrainConfig, batch_size: int, device: torch.device) -> Tensor:
alpha = float(cfg.dt_alpha)
if alpha <= 0:
raise ValueError("dt_alpha must be > 0")
dist = torch.distributions.Gamma(alpha, 1.0)
raw = dist.sample((batch_size, cfg.seq_len)).to(device)
dt_seq = raw / raw.sum(dim=-1, keepdim=True)
base = 1.0 / cfg.seq_len
max_dt = float(cfg.dt_max)
if max_dt <= base:
return torch.full_like(dt_seq, base)
max_current = dt_seq.max(dim=-1, keepdim=True).values
if (max_current > max_dt).any():
gamma = (max_dt - base) / (max_current - base)
gamma = gamma.clamp(0.0, 1.0)
dt_seq = gamma * dt_seq + (1.0 - gamma) * base
return dt_seq
def sample_batch(
cfg: TrainConfig,
sphere_a: tuple[Tensor, Tensor],
sphere_b: tuple[Tensor, Tensor],
device: torch.device,
) -> tuple[Tensor, Tensor, Tensor, Tensor]:
) -> tuple[Tensor, Tensor, Tensor, Tensor, Tensor]:
center_a, radius_a = sphere_a
center_b, radius_b = sphere_b
x0 = sample_points_in_sphere(center_a, float(radius_a.item()), cfg.batch_size, device)
x1 = sample_points_in_sphere(center_b, float(radius_b.item()), cfg.batch_size, device)
v_gt = x1 - x0
dt_fixed = 1.0 / cfg.seq_len
t_seq = torch.arange(cfg.seq_len, device=device) * dt_fixed
x_seq = x0[:, None, :] + t_seq[None, :, None] * v_gt[:, None, :]
return x0, x1, x_seq, t_seq
dt_seq = sample_time_sequence(cfg, cfg.batch_size, device)
t_seq = torch.cumsum(dt_seq, dim=-1)
t_seq = torch.cat([torch.zeros(cfg.batch_size, 1, device=device), t_seq[:, :-1]], dim=-1)
x_seq = x0[:, None, :] + t_seq[:, :, None] * v_gt[:, None, :]
return x0, x1, x_seq, t_seq, dt_seq
def compute_losses(
@@ -245,19 +268,26 @@ def compute_losses(
x0: Tensor,
v_gt: Tensor,
t_seq: Tensor,
dt_seq: Tensor,
cfg: TrainConfig,
) -> tuple[Tensor, Tensor, Tensor]:
target_disp = v_gt[:, None, :] * dt.unsqueeze(-1)
flow_loss = F.mse_loss(delta, target_disp)
) -> dict[str, Tensor]:
losses: dict[str, Tensor] = {}
t_next = t_seq[None, :, None] + dt.unsqueeze(-1)
t_next = torch.clamp(t_next, 0.0, 1.0)
x_target = x0[:, None, :] + t_next * v_gt[:, None, :]
x_next_pred = x_seq + delta
pos_loss = F.mse_loss(x_next_pred, x_target)
if cfg.use_flow_loss:
target_disp = v_gt[:, None, :] * dt.unsqueeze(-1)
losses["flow"] = F.mse_loss(delta, target_disp)
nfe_loss = (-torch.log(dt)).mean()
return flow_loss, pos_loss, nfe_loss
if cfg.use_pos_loss:
t_next = t_seq + dt
t_next = torch.clamp(t_next, 0.0, 1.0)
x_target = x0[:, None, :] + t_next.unsqueeze(-1) * v_gt[:, None, :]
x_next_pred = x_seq + delta
losses["pos"] = F.mse_loss(x_next_pred, x_target)
if cfg.use_dt_loss:
losses["dt"] = F.mse_loss(dt, dt_seq)
return losses
def validate(
@@ -271,12 +301,13 @@ def validate(
) -> None:
model.eval()
center_b, radius_b = sphere_b
max_steps = cfg.seq_len if cfg.val_max_steps <= 0 else cfg.val_max_steps
with torch.no_grad():
x0 = sample_points_in_sphere(
sphere_a[0], float(sphere_a[1].item()), cfg.val_samples, device
)
traj = rollout_trajectory(model, x0, max_steps=cfg.val_max_steps)
traj = rollout_trajectory(model, x0, max_steps=max_steps)
x_final = traj[:, -1, :]
center_b_cpu = center_b.detach().cpu()
@@ -291,6 +322,7 @@ def validate(
"val/final_dist_mean": float(dist.mean().item()),
"val/final_dist_min": float(dist.min().item()),
"val/final_dist_max": float(dist.max().item()),
"val/max_steps": float(max_steps),
},
step=step,
)
@@ -351,54 +383,86 @@ def train(cfg: TrainConfig) -> tuple[ASMamba, tuple[Tensor, Tensor], tuple[Tenso
global_step = 0
for epoch in range(cfg.epochs):
warmup = epoch < cfg.warmup_epochs
model.train()
for p in model.dt_head.parameters():
p.requires_grad = not warmup
for _ in range(cfg.steps_per_epoch):
x0, x1, x_seq, t_seq = sample_batch(cfg, sphere_a, sphere_b, device)
x0, x1, x_seq, t_seq, dt_seq = sample_batch(cfg, sphere_a, sphere_b, device)
v_gt = x1 - x0
delta, dt, _ = model(x_seq)
if warmup:
dt = torch.full_like(dt, 1.0 / cfg.seq_len)
flow_loss, pos_loss, nfe_loss = compute_losses(
losses = compute_losses(
delta=delta,
dt=dt,
x_seq=x_seq,
x0=x0,
v_gt=v_gt,
t_seq=t_seq,
dt_seq=dt_seq,
cfg=cfg,
)
loss = cfg.lambda_flow * flow_loss + cfg.lambda_pos * pos_loss
if not warmup:
loss = loss + cfg.lambda_nfe * nfe_loss
loss = torch.tensor(0.0, device=device)
if cfg.use_flow_loss and "flow" in losses:
loss = loss + cfg.lambda_flow * losses["flow"]
if cfg.use_pos_loss and "pos" in losses:
loss = loss + cfg.lambda_pos * losses["pos"]
if cfg.use_dt_loss and "dt" in losses:
loss = loss + cfg.lambda_dt * losses["dt"]
if loss.item() == 0.0:
raise RuntimeError("No loss enabled: enable at least one of flow/pos/dt.")
optimizer.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()
if global_step % 10 == 0:
dt_min = float(dt.min().item())
dt_max = float(dt.max().item())
dt_mean = float(dt.mean().item())
dt_gt_min = float(dt_seq.min().item())
dt_gt_max = float(dt_seq.max().item())
dt_gt_mean = float(dt_seq.mean().item())
eps = 1e-6
clamp_min_ratio = float((dt <= cfg.dt_min + eps).float().mean().item())
clamp_max_ratio = float((dt >= cfg.dt_max - eps).float().mean().item())
clamp_any_ratio = float(
((dt <= cfg.dt_min + eps) | (dt >= cfg.dt_max - eps)).float().mean().item()
)
logger.log(
{
"loss/total": float(loss.item()),
"loss/flow": float(flow_loss.item()),
"loss/pos": float(pos_loss.item()),
"loss/nfe": float(nfe_loss.item()),
"dt/mean": float(dt.mean().item()),
"dt/min": float(dt.min().item()),
"dt/max": float(dt.max().item()),
"stage": 0 if warmup else 1,
"loss/flow": float(losses.get("flow", torch.tensor(0.0)).item()),
"loss/pos": float(losses.get("pos", torch.tensor(0.0)).item()),
"loss/dt": float(losses.get("dt", torch.tensor(0.0)).item()),
"dt/pred_mean": dt_mean,
"dt/pred_min": dt_min,
"dt/pred_max": dt_max,
"dt/gt_mean": dt_gt_mean,
"dt/gt_min": dt_gt_min,
"dt/gt_max": dt_gt_max,
"dt/clamp_min_ratio": clamp_min_ratio,
"dt/clamp_max_ratio": clamp_max_ratio,
"dt/clamp_any_ratio": clamp_any_ratio,
},
step=global_step,
)
if cfg.val_every > 0 and global_step > 0 and global_step % cfg.val_every == 0:
validate(model, cfg, sphere_a, sphere_b, device, logger, global_step)
dt_hist_path = Path(cfg.output_dir) / f"dt_hist_step_{global_step:06d}.png"
plot_dt_hist(
dt,
dt_seq,
dt_hist_path,
title=f"dt Distribution (step {global_step})",
)
logger.log_image(
"train/dt_hist",
dt_hist_path,
caption=f"step {global_step}",
step=global_step,
)
global_step += 1
logger.finish()
@@ -408,7 +472,7 @@ def train(cfg: TrainConfig) -> tuple[ASMamba, tuple[Tensor, Tensor], tuple[Tenso
def rollout_trajectory(
model: ASMamba,
x0: Tensor,
max_steps: int = 100,
max_steps: int,
) -> Tensor:
device = x0.device
model.eval()
@@ -427,11 +491,9 @@ def rollout_trajectory(
scale = (remaining / dt).unsqueeze(-1)
delta = torch.where(overshoot.unsqueeze(-1), delta * scale, delta)
dt = torch.where(overshoot, remaining, dt)
x = x + delta
total_time = total_time + dt
traj.append(x.detach().cpu())
if torch.all(total_time >= 1.0 - 1e-6):
break
@@ -496,6 +558,27 @@ def plot_trajectories(
plt.close(fig)
def plot_dt_hist(
dt_pred: Tensor,
dt_gt: Tensor,
save_path: Path,
title: str = "dt Distribution",
) -> None:
dt_pred_np = dt_pred.detach().cpu().numpy().reshape(-1)
dt_gt_np = dt_gt.detach().cpu().numpy().reshape(-1)
fig, ax = plt.subplots(figsize=(6, 4))
ax.hist(dt_gt_np, bins=30, alpha=0.6, label="dt_gt", color="steelblue")
ax.hist(dt_pred_np, bins=30, alpha=0.6, label="dt_pred", color="orange")
ax.set_title(title)
ax.set_xlabel("dt")
ax.set_ylabel("count")
ax.legend(loc="best")
fig.tight_layout()
fig.savefig(save_path, dpi=160)
plt.close(fig)
def run_training_and_plot(cfg: TrainConfig) -> Path:
model, sphere_a, sphere_b = train(cfg)
device = next(model.parameters()).device
@@ -504,7 +587,8 @@ def run_training_and_plot(cfg: TrainConfig) -> Path:
x0 = sample_points_in_sphere(
sphere_a[0], float(sphere_a[1].item()), plot_samples, device
)
traj = rollout_trajectory(model, x0, max_steps=cfg.val_max_steps)
max_steps = cfg.seq_len if cfg.val_max_steps <= 0 else cfg.val_max_steps
traj = rollout_trajectory(model, x0, max_steps=max_steps)
output_dir = Path(cfg.output_dir)
save_path = output_dir / "as_mamba_trajectory.png"
plot_trajectories(traj, sphere_a, sphere_b, save_path)