feat: add conditional AdaLNZero and two-target spheres sampling
This commit is contained in:
221
as_mamba.py
221
as_mamba.py
@@ -59,6 +59,21 @@ class TrainConfig:
|
||||
val_max_steps: int = 0
|
||||
|
||||
|
||||
class AdaLNZero(nn.Module):
|
||||
def __init__(self, d_model: int) -> None:
|
||||
super().__init__()
|
||||
self.norm = RMSNorm(d_model)
|
||||
self.mod = nn.Linear(d_model, 2 * d_model)
|
||||
nn.init.zeros_(self.mod.weight)
|
||||
nn.init.zeros_(self.mod.bias)
|
||||
|
||||
def forward(self, x: Tensor, cond: Tensor) -> Tensor:
|
||||
x = self.norm(x)
|
||||
params = self.mod(cond).unsqueeze(1)
|
||||
scale, shift = params.chunk(2, dim=-1)
|
||||
return x * (1 + scale) + shift
|
||||
|
||||
|
||||
class Mamba2Backbone(nn.Module):
|
||||
def __init__(self, args: Mamba2Config, use_residual: bool = True) -> None:
|
||||
super().__init__()
|
||||
@@ -69,7 +84,7 @@ class Mamba2Backbone(nn.Module):
|
||||
nn.ModuleDict(
|
||||
dict(
|
||||
mixer=Mamba2(args),
|
||||
norm=RMSNorm(args.d_model),
|
||||
adaln=AdaLNZero(args.d_model),
|
||||
)
|
||||
)
|
||||
for _ in range(args.n_layer)
|
||||
@@ -78,13 +93,19 @@ class Mamba2Backbone(nn.Module):
|
||||
self.norm_f = RMSNorm(args.d_model)
|
||||
|
||||
def forward(
|
||||
self, x: Tensor, h: Optional[list[InferenceCache]] = None
|
||||
self,
|
||||
x: Tensor,
|
||||
cond: Optional[Tensor] = None,
|
||||
h: Optional[list[InferenceCache]] = None,
|
||||
) -> tuple[Tensor, list[InferenceCache]]:
|
||||
if h is None:
|
||||
h = [None for _ in range(self.args.n_layer)]
|
||||
if cond is None:
|
||||
cond = torch.zeros(x.shape[0], x.shape[-1], device=x.device, dtype=x.dtype)
|
||||
|
||||
for i, layer in enumerate(self.layers):
|
||||
y, h[i] = layer["mixer"](layer["norm"](x), h[i])
|
||||
x_mod = layer["adaln"](x, cond)
|
||||
y, h[i] = layer["mixer"](x_mod, h[i])
|
||||
x = x + y if self.use_residual else y
|
||||
|
||||
x = self.norm_f(x)
|
||||
@@ -109,6 +130,7 @@ class ASMamba(nn.Module):
|
||||
)
|
||||
self.backbone = Mamba2Backbone(args, use_residual=cfg.use_residual)
|
||||
self.input_proj = nn.Linear(3, cfg.d_model)
|
||||
self.cond_emb = nn.Embedding(2, cfg.d_model)
|
||||
self.delta_head = nn.Linear(cfg.d_model, 3)
|
||||
self.dt_head = nn.Sequential(
|
||||
nn.Linear(cfg.d_model, cfg.d_model),
|
||||
@@ -117,19 +139,20 @@ class ASMamba(nn.Module):
|
||||
)
|
||||
|
||||
def forward(
|
||||
self, x: Tensor, h: Optional[list[InferenceCache]] = None
|
||||
self, x: Tensor, cond: Tensor, h: Optional[list[InferenceCache]] = None
|
||||
) -> tuple[Tensor, Tensor, list[InferenceCache]]:
|
||||
x_proj = self.input_proj(x)
|
||||
feats, h = self.backbone(x_proj, h)
|
||||
cond_vec = self.cond_emb(cond)
|
||||
feats, h = self.backbone(x_proj, cond_vec, h)
|
||||
delta = self.delta_head(feats)
|
||||
dt_raw = self.dt_head(feats).squeeze(-1)
|
||||
dt = torch.clamp(F.softplus(dt_raw), min=self.dt_min, max=self.dt_max)
|
||||
return delta, dt, h
|
||||
|
||||
def step(
|
||||
self, x: Tensor, h: list[InferenceCache]
|
||||
self, x: Tensor, cond: Tensor, h: list[InferenceCache]
|
||||
) -> tuple[Tensor, Tensor, list[InferenceCache]]:
|
||||
delta, dt, h = self.forward(x.unsqueeze(1), h)
|
||||
delta, dt, h = self.forward(x.unsqueeze(1), cond, h)
|
||||
return delta[:, 0, :], dt[:, 0], h
|
||||
|
||||
def init_cache(self, batch_size: int, device: torch.device) -> list[InferenceCache]:
|
||||
@@ -207,21 +230,42 @@ def sample_points_in_sphere(
|
||||
return center + direction * r
|
||||
|
||||
|
||||
def sample_sphere_params(cfg: TrainConfig, device: torch.device) -> tuple[Tensor, Tensor]:
|
||||
center_a = torch.empty(3, device=device).uniform_(cfg.center_min, cfg.center_max)
|
||||
center_b = torch.empty(3, device=device).uniform_(cfg.center_min, cfg.center_max)
|
||||
for _ in range(128):
|
||||
if torch.norm(center_a - center_b) >= cfg.center_distance_min:
|
||||
break
|
||||
center_b = torch.empty(3, device=device).uniform_(cfg.center_min, cfg.center_max)
|
||||
if torch.norm(center_a - center_b) < 1e-3:
|
||||
center_b = center_b + torch.tensor([cfg.center_distance_min, 0.0, 0.0], device=device)
|
||||
def sample_center(cfg: TrainConfig, device: torch.device) -> Tensor:
|
||||
return torch.empty(3, device=device).uniform_(cfg.center_min, cfg.center_max)
|
||||
|
||||
|
||||
def sample_center_far(
|
||||
cfg: TrainConfig, device: torch.device, refs: list[Tensor]
|
||||
) -> Tensor:
|
||||
center = sample_center(cfg, device)
|
||||
for _ in range(256):
|
||||
if all(torch.norm(center - ref) >= cfg.center_distance_min for ref in refs):
|
||||
return center
|
||||
center = sample_center(cfg, device)
|
||||
return center
|
||||
|
||||
|
||||
def sample_spheres_params(
|
||||
cfg: TrainConfig, device: torch.device
|
||||
) -> tuple[tuple[Tensor, Tensor], tuple[Tensor, Tensor], tuple[Tensor, Tensor]]:
|
||||
center_a = sample_center(cfg, device)
|
||||
center_b0 = sample_center_far(cfg, device, [center_a])
|
||||
center_b1 = sample_center_far(cfg, device, [center_a, center_b0])
|
||||
if torch.norm(center_a - center_b0) < 1e-3:
|
||||
center_b0 = center_b0 + torch.tensor(
|
||||
[cfg.center_distance_min, 0.0, 0.0], device=device
|
||||
)
|
||||
if torch.norm(center_a - center_b1) < 1e-3:
|
||||
center_b1 = center_b1 + torch.tensor(
|
||||
[-cfg.center_distance_min, 0.0, 0.0], device=device
|
||||
)
|
||||
radius_a = float(torch.empty(1).uniform_(cfg.radius_min, cfg.radius_max).item())
|
||||
radius_b = float(torch.empty(1).uniform_(cfg.radius_min, cfg.radius_max).item())
|
||||
return (center_a, torch.tensor(radius_a, device=device)), (
|
||||
center_b,
|
||||
torch.tensor(radius_b, device=device),
|
||||
)
|
||||
radius_b0 = float(torch.empty(1).uniform_(cfg.radius_min, cfg.radius_max).item())
|
||||
radius_b1 = float(torch.empty(1).uniform_(cfg.radius_min, cfg.radius_max).item())
|
||||
sphere_a = (center_a, torch.tensor(radius_a, device=device))
|
||||
sphere_b0 = (center_b0, torch.tensor(radius_b0, device=device))
|
||||
sphere_b1 = (center_b1, torch.tensor(radius_b1, device=device))
|
||||
return sphere_a, sphere_b0, sphere_b1
|
||||
|
||||
|
||||
def sample_time_sequence(cfg: TrainConfig, batch_size: int, device: torch.device) -> Tensor:
|
||||
@@ -246,19 +290,26 @@ def sample_time_sequence(cfg: TrainConfig, batch_size: int, device: torch.device
|
||||
def sample_batch(
|
||||
cfg: TrainConfig,
|
||||
sphere_a: tuple[Tensor, Tensor],
|
||||
sphere_b: tuple[Tensor, Tensor],
|
||||
sphere_b0: tuple[Tensor, Tensor],
|
||||
sphere_b1: tuple[Tensor, Tensor],
|
||||
device: torch.device,
|
||||
) -> tuple[Tensor, Tensor, Tensor, Tensor, Tensor]:
|
||||
) -> tuple[Tensor, Tensor, Tensor, Tensor, Tensor, Tensor]:
|
||||
center_a, radius_a = sphere_a
|
||||
center_b, radius_b = sphere_b
|
||||
x0 = sample_points_in_sphere(center_a, float(radius_a.item()), cfg.batch_size, device)
|
||||
x1 = sample_points_in_sphere(center_b, float(radius_b.item()), cfg.batch_size, device)
|
||||
cond = torch.randint(0, 2, (cfg.batch_size,), device=device, dtype=torch.long)
|
||||
x1_0 = sample_points_in_sphere(
|
||||
sphere_b0[0], float(sphere_b0[1].item()), cfg.batch_size, device
|
||||
)
|
||||
x1_1 = sample_points_in_sphere(
|
||||
sphere_b1[0], float(sphere_b1[1].item()), cfg.batch_size, device
|
||||
)
|
||||
x1 = torch.where(cond[:, None] == 0, x1_0, x1_1)
|
||||
v_gt = x1 - x0
|
||||
dt_seq = sample_time_sequence(cfg, cfg.batch_size, device)
|
||||
t_seq = torch.cumsum(dt_seq, dim=-1)
|
||||
t_seq = torch.cat([torch.zeros(cfg.batch_size, 1, device=device), t_seq[:, :-1]], dim=-1)
|
||||
x_seq = x0[:, None, :] + t_seq[:, :, None] * v_gt[:, None, :]
|
||||
return x0, x1, x_seq, t_seq, dt_seq
|
||||
return x0, x1, x_seq, t_seq, dt_seq, cond
|
||||
|
||||
|
||||
def compute_losses(
|
||||
@@ -294,30 +345,50 @@ def validate(
|
||||
model: ASMamba,
|
||||
cfg: TrainConfig,
|
||||
sphere_a: tuple[Tensor, Tensor],
|
||||
sphere_b: tuple[Tensor, Tensor],
|
||||
sphere_b0: tuple[Tensor, Tensor],
|
||||
sphere_b1: tuple[Tensor, Tensor],
|
||||
device: torch.device,
|
||||
logger: SwanLogger,
|
||||
step: int,
|
||||
) -> None:
|
||||
model.eval()
|
||||
center_b, radius_b = sphere_b
|
||||
center_b0, radius_b0 = sphere_b0
|
||||
center_b1, radius_b1 = sphere_b1
|
||||
max_steps = cfg.seq_len if cfg.val_max_steps <= 0 else cfg.val_max_steps
|
||||
|
||||
with torch.no_grad():
|
||||
x0 = sample_points_in_sphere(
|
||||
sphere_a[0], float(sphere_a[1].item()), cfg.val_samples, device
|
||||
)
|
||||
traj = rollout_trajectory(model, x0, max_steps=max_steps)
|
||||
cond = torch.randint(0, 2, (cfg.val_samples,), device=device, dtype=torch.long)
|
||||
traj = rollout_trajectory(model, x0, cond, max_steps=max_steps)
|
||||
|
||||
x_final = traj[:, -1, :]
|
||||
center_b_cpu = center_b.detach().cpu()
|
||||
radius_b_cpu = radius_b.detach().cpu()
|
||||
dist = torch.linalg.norm(x_final - center_b_cpu, dim=-1)
|
||||
inside = dist <= radius_b_cpu
|
||||
center_b0_cpu = center_b0.detach().cpu()
|
||||
center_b1_cpu = center_b1.detach().cpu()
|
||||
radius_b0_cpu = radius_b0.detach().cpu()
|
||||
radius_b1_cpu = radius_b1.detach().cpu()
|
||||
cond_cpu = cond.detach().cpu()
|
||||
target_center = torch.where(
|
||||
cond_cpu[:, None] == 0, center_b0_cpu.unsqueeze(0), center_b1_cpu.unsqueeze(0)
|
||||
)
|
||||
target_radius = torch.where(cond_cpu == 0, radius_b0_cpu, radius_b1_cpu)
|
||||
dist = torch.linalg.norm(x_final - target_center, dim=-1)
|
||||
inside = dist <= target_radius
|
||||
mask0 = cond_cpu == 0
|
||||
mask1 = cond_cpu == 1
|
||||
inside0 = inside[mask0]
|
||||
inside1 = inside[mask1]
|
||||
ratio0 = float(inside0.float().mean().item()) if inside0.numel() > 0 else 0.0
|
||||
ratio1 = float(inside1.float().mean().item()) if inside1.numel() > 0 else 0.0
|
||||
|
||||
logger.log(
|
||||
{
|
||||
"val/inside_ratio": float(inside.float().mean().item()),
|
||||
"val/inside_ratio_c0": ratio0,
|
||||
"val/inside_ratio_c1": ratio1,
|
||||
"val/cond0_count": float(mask0.float().sum().item()),
|
||||
"val/cond1_count": float(mask1.float().sum().item()),
|
||||
"val/inside_count": float(inside.float().sum().item()),
|
||||
"val/final_dist_mean": float(dist.mean().item()),
|
||||
"val/final_dist_min": float(dist.min().item()),
|
||||
@@ -334,11 +405,14 @@ def validate(
|
||||
return
|
||||
indices = torch.linspace(0, traj.shape[0] - 1, steps=count).long()
|
||||
traj_plot = traj[indices]
|
||||
cond_plot = cond_cpu[indices]
|
||||
save_path = Path(cfg.output_dir) / f"val_traj_step_{step:06d}.png"
|
||||
plot_trajectories(
|
||||
plot_trajectories_cond(
|
||||
traj_plot,
|
||||
cond_plot,
|
||||
sphere_a,
|
||||
sphere_b,
|
||||
sphere_b0,
|
||||
sphere_b1,
|
||||
save_path,
|
||||
title=f"Validation Trajectories (step {step})",
|
||||
)
|
||||
@@ -353,7 +427,9 @@ def validate(
|
||||
model.train()
|
||||
|
||||
|
||||
def train(cfg: TrainConfig) -> tuple[ASMamba, tuple[Tensor, Tensor], tuple[Tensor, Tensor]]:
|
||||
def train(
|
||||
cfg: TrainConfig,
|
||||
) -> tuple[ASMamba, tuple[Tensor, Tensor], tuple[Tensor, Tensor], tuple[Tensor, Tensor]]:
|
||||
device = torch.device(cfg.device if torch.cuda.is_available() else "cpu")
|
||||
set_seed(cfg.seed)
|
||||
output_dir = Path(cfg.output_dir)
|
||||
@@ -363,21 +439,30 @@ def train(cfg: TrainConfig) -> tuple[ASMamba, tuple[Tensor, Tensor], tuple[Tenso
|
||||
optimizer = torch.optim.AdamW(model.parameters(), lr=cfg.lr, weight_decay=cfg.weight_decay)
|
||||
logger = SwanLogger(cfg)
|
||||
|
||||
sphere_a, sphere_b = sample_sphere_params(cfg, device)
|
||||
sphere_a, sphere_b0, sphere_b1 = sample_spheres_params(cfg, device)
|
||||
center_a, radius_a = sphere_a
|
||||
center_b, radius_b = sphere_b
|
||||
center_dist = torch.norm(center_a - center_b).item()
|
||||
center_b0, radius_b0 = sphere_b0
|
||||
center_b1, radius_b1 = sphere_b1
|
||||
dist_a_b0 = torch.norm(center_a - center_b0).item()
|
||||
dist_a_b1 = torch.norm(center_a - center_b1).item()
|
||||
dist_b0_b1 = torch.norm(center_b0 - center_b1).item()
|
||||
logger.log(
|
||||
{
|
||||
"sphere_a/radius": float(radius_a.item()),
|
||||
"sphere_b/radius": float(radius_b.item()),
|
||||
"sphere_a/center_x": float(center_a[0].item()),
|
||||
"sphere_a/center_y": float(center_a[1].item()),
|
||||
"sphere_a/center_z": float(center_a[2].item()),
|
||||
"sphere_b/center_x": float(center_b[0].item()),
|
||||
"sphere_b/center_y": float(center_b[1].item()),
|
||||
"sphere_b/center_z": float(center_b[2].item()),
|
||||
"sphere/center_dist": float(center_dist),
|
||||
"sphere_b0/radius": float(radius_b0.item()),
|
||||
"sphere_b0/center_x": float(center_b0[0].item()),
|
||||
"sphere_b0/center_y": float(center_b0[1].item()),
|
||||
"sphere_b0/center_z": float(center_b0[2].item()),
|
||||
"sphere_b1/radius": float(radius_b1.item()),
|
||||
"sphere_b1/center_x": float(center_b1[0].item()),
|
||||
"sphere_b1/center_y": float(center_b1[1].item()),
|
||||
"sphere_b1/center_z": float(center_b1[2].item()),
|
||||
"sphere/dist_a_b0": float(dist_a_b0),
|
||||
"sphere/dist_a_b1": float(dist_a_b1),
|
||||
"sphere/dist_b0_b1": float(dist_b0_b1),
|
||||
}
|
||||
)
|
||||
|
||||
@@ -386,10 +471,12 @@ def train(cfg: TrainConfig) -> tuple[ASMamba, tuple[Tensor, Tensor], tuple[Tenso
|
||||
model.train()
|
||||
|
||||
for _ in range(cfg.steps_per_epoch):
|
||||
x0, x1, x_seq, t_seq, dt_seq = sample_batch(cfg, sphere_a, sphere_b, device)
|
||||
x0, x1, x_seq, t_seq, dt_seq, cond = sample_batch(
|
||||
cfg, sphere_a, sphere_b0, sphere_b1, device
|
||||
)
|
||||
v_gt = x1 - x0
|
||||
|
||||
delta, dt, _ = model(x_seq)
|
||||
delta, dt, _ = model(x_seq, cond)
|
||||
|
||||
losses = compute_losses(
|
||||
delta=delta,
|
||||
@@ -449,7 +536,16 @@ def train(cfg: TrainConfig) -> tuple[ASMamba, tuple[Tensor, Tensor], tuple[Tenso
|
||||
)
|
||||
|
||||
if cfg.val_every > 0 and global_step > 0 and global_step % cfg.val_every == 0:
|
||||
validate(model, cfg, sphere_a, sphere_b, device, logger, global_step)
|
||||
validate(
|
||||
model,
|
||||
cfg,
|
||||
sphere_a,
|
||||
sphere_b0,
|
||||
sphere_b1,
|
||||
device,
|
||||
logger,
|
||||
global_step,
|
||||
)
|
||||
dt_hist_path = Path(cfg.output_dir) / f"dt_hist_step_{global_step:06d}.png"
|
||||
plot_dt_hist(
|
||||
dt,
|
||||
@@ -466,12 +562,13 @@ def train(cfg: TrainConfig) -> tuple[ASMamba, tuple[Tensor, Tensor], tuple[Tenso
|
||||
global_step += 1
|
||||
|
||||
logger.finish()
|
||||
return model, sphere_a, sphere_b
|
||||
return model, sphere_a, sphere_b0, sphere_b1
|
||||
|
||||
|
||||
def rollout_trajectory(
|
||||
model: ASMamba,
|
||||
x0: Tensor,
|
||||
cond: Tensor,
|
||||
max_steps: int,
|
||||
) -> Tensor:
|
||||
device = x0.device
|
||||
@@ -483,7 +580,7 @@ def rollout_trajectory(
|
||||
|
||||
with torch.no_grad():
|
||||
for _ in range(max_steps):
|
||||
delta, dt, h = model.step(x, h)
|
||||
delta, dt, h = model.step(x, cond, h)
|
||||
dt = torch.clamp(dt, min=model.dt_min, max=model.dt_max)
|
||||
remaining = 1.0 - total_time
|
||||
overshoot = dt > remaining
|
||||
@@ -512,10 +609,12 @@ def sphere_wireframe(
|
||||
return x, y, z
|
||||
|
||||
|
||||
def plot_trajectories(
|
||||
def plot_trajectories_cond(
|
||||
traj: Tensor,
|
||||
cond: Tensor,
|
||||
sphere_a: tuple[Tensor, Tensor],
|
||||
sphere_b: tuple[Tensor, Tensor],
|
||||
sphere_b0: tuple[Tensor, Tensor],
|
||||
sphere_b1: tuple[Tensor, Tensor],
|
||||
save_path: Path,
|
||||
title: str = "AS-Mamba Trajectories",
|
||||
) -> None:
|
||||
@@ -523,16 +622,18 @@ def plot_trajectories(
|
||||
if traj.dim() == 2:
|
||||
traj = traj.unsqueeze(0)
|
||||
traj_np = traj.numpy()
|
||||
cond_np = cond.detach().cpu().numpy()
|
||||
|
||||
fig = plt.figure(figsize=(7, 6))
|
||||
ax = fig.add_subplot(111, projection="3d")
|
||||
|
||||
for i in range(traj_np.shape[0]):
|
||||
color = "tab:green" if cond_np[i] == 0 else "tab:orange"
|
||||
ax.plot(
|
||||
traj_np[i, :, 0],
|
||||
traj_np[i, :, 1],
|
||||
traj_np[i, :, 2],
|
||||
color="green",
|
||||
color=color,
|
||||
alpha=0.6,
|
||||
)
|
||||
|
||||
@@ -542,11 +643,14 @@ def plot_trajectories(
|
||||
ax.scatter(ends[:, 0], ends[:, 1], ends[:, 2], color="red", s=20, label="End")
|
||||
|
||||
center_a, radius_a = sphere_a
|
||||
center_b, radius_b = sphere_b
|
||||
center_b0, radius_b0 = sphere_b0
|
||||
center_b1, radius_b1 = sphere_b1
|
||||
x_a, y_a, z_a = sphere_wireframe(center_a, float(radius_a.item()))
|
||||
x_b, y_b, z_b = sphere_wireframe(center_b, float(radius_b.item()))
|
||||
x_b0, y_b0, z_b0 = sphere_wireframe(center_b0, float(radius_b0.item()))
|
||||
x_b1, y_b1, z_b1 = sphere_wireframe(center_b1, float(radius_b1.item()))
|
||||
ax.plot_wireframe(x_a, y_a, z_a, color="blue", alpha=0.15, linewidth=0.5)
|
||||
ax.plot_wireframe(x_b, y_b, z_b, color="red", alpha=0.15, linewidth=0.5)
|
||||
ax.plot_wireframe(x_b0, y_b0, z_b0, color="tab:green", alpha=0.2, linewidth=0.5)
|
||||
ax.plot_wireframe(x_b1, y_b1, z_b1, color="tab:orange", alpha=0.2, linewidth=0.5)
|
||||
|
||||
ax.set_title(title)
|
||||
ax.set_xlabel("X")
|
||||
@@ -580,7 +684,7 @@ def plot_dt_hist(
|
||||
|
||||
|
||||
def run_training_and_plot(cfg: TrainConfig) -> Path:
|
||||
model, sphere_a, sphere_b = train(cfg)
|
||||
model, sphere_a, sphere_b0, sphere_b1 = train(cfg)
|
||||
device = next(model.parameters()).device
|
||||
|
||||
plot_samples = max(1, cfg.val_plot_samples)
|
||||
@@ -588,8 +692,9 @@ def run_training_and_plot(cfg: TrainConfig) -> Path:
|
||||
sphere_a[0], float(sphere_a[1].item()), plot_samples, device
|
||||
)
|
||||
max_steps = cfg.seq_len if cfg.val_max_steps <= 0 else cfg.val_max_steps
|
||||
traj = rollout_trajectory(model, x0, max_steps=max_steps)
|
||||
cond = torch.randint(0, 2, (plot_samples,), device=device, dtype=torch.long)
|
||||
traj = rollout_trajectory(model, x0, cond, max_steps=max_steps)
|
||||
output_dir = Path(cfg.output_dir)
|
||||
save_path = output_dir / "as_mamba_trajectory.png"
|
||||
plot_trajectories(traj, sphere_a, sphere_b, save_path)
|
||||
plot_trajectories_cond(traj, cond, sphere_a, sphere_b0, sphere_b1, save_path)
|
||||
return save_path
|
||||
|
||||
Reference in New Issue
Block a user