165 lines
3.0 KiB
Bash
165 lines
3.0 KiB
Bash
#!/bin/bash
|
|
|
|
model_name=vanillaMamba
|
|
|
|
# M4 Monthly
|
|
python -u run.py \
|
|
--task_name short_term_forecast \
|
|
--is_training 1 \
|
|
--root_path ./dataset/m4 \
|
|
--seasonal_patterns 'Monthly' \
|
|
--model_id m4_Monthly \
|
|
--model $model_name \
|
|
--data m4 \
|
|
--features M \
|
|
--e_layers 2 \
|
|
--enc_in 1 \
|
|
--c_out 1 \
|
|
--batch_size 16 \
|
|
--d_model 128 \
|
|
--expand 2 \
|
|
--d_conv 4 \
|
|
--d_state 64 \
|
|
--headdim 64 \
|
|
--ngroups 1 \
|
|
--chunk_size 256 \
|
|
--dropout 0.1 \
|
|
--des 'Exp' \
|
|
--itr 1 \
|
|
--learning_rate 0.001 \
|
|
--loss 'SMAPE'
|
|
|
|
# M4 Yearly
|
|
python -u run.py \
|
|
--task_name short_term_forecast \
|
|
--is_training 1 \
|
|
--root_path ./dataset/m4 \
|
|
--seasonal_patterns 'Yearly' \
|
|
--model_id m4_Yearly \
|
|
--model $model_name \
|
|
--data m4 \
|
|
--features M \
|
|
--e_layers 2 \
|
|
--enc_in 1 \
|
|
--c_out 1 \
|
|
--batch_size 16 \
|
|
--d_model 128 \
|
|
--expand 2 \
|
|
--d_conv 4 \
|
|
--d_state 64 \
|
|
--headdim 64 \
|
|
--ngroups 1 \
|
|
--chunk_size 256 \
|
|
--dropout 0.1 \
|
|
--des 'Exp' \
|
|
--itr 1 \
|
|
--learning_rate 0.001 \
|
|
--loss 'SMAPE'
|
|
|
|
# M4 Quarterly
|
|
python -u run.py \
|
|
--task_name short_term_forecast \
|
|
--is_training 1 \
|
|
--root_path ./dataset/m4 \
|
|
--seasonal_patterns 'Quarterly' \
|
|
--model_id m4_Quarterly \
|
|
--model $model_name \
|
|
--data m4 \
|
|
--features M \
|
|
--e_layers 2 \
|
|
--enc_in 1 \
|
|
--c_out 1 \
|
|
--batch_size 16 \
|
|
--d_model 128 \
|
|
--expand 2 \
|
|
--d_conv 4 \
|
|
--d_state 64 \
|
|
--headdim 64 \
|
|
--ngroups 1 \
|
|
--chunk_size 256 \
|
|
--dropout 0.1 \
|
|
--des 'Exp' \
|
|
--itr 1 \
|
|
--learning_rate 0.001 \
|
|
--loss 'SMAPE'
|
|
|
|
# M4 Weekly
|
|
python -u run.py \
|
|
--task_name short_term_forecast \
|
|
--is_training 1 \
|
|
--root_path ./dataset/m4 \
|
|
--seasonal_patterns 'Weekly' \
|
|
--model_id m4_Weekly \
|
|
--model $model_name \
|
|
--data m4 \
|
|
--features M \
|
|
--e_layers 2 \
|
|
--enc_in 1 \
|
|
--c_out 1 \
|
|
--batch_size 16 \
|
|
--d_model 128 \
|
|
--expand 2 \
|
|
--d_conv 4 \
|
|
--d_state 64 \
|
|
--headdim 64 \
|
|
--ngroups 1 \
|
|
--chunk_size 256 \
|
|
--dropout 0.1 \
|
|
--des 'Exp' \
|
|
--itr 1 \
|
|
--learning_rate 0.001 \
|
|
--loss 'SMAPE'
|
|
|
|
# M4 Daily
|
|
python -u run.py \
|
|
--task_name short_term_forecast \
|
|
--is_training 1 \
|
|
--root_path ./dataset/m4 \
|
|
--seasonal_patterns 'Daily' \
|
|
--model_id m4_Daily \
|
|
--model $model_name \
|
|
--data m4 \
|
|
--features M \
|
|
--e_layers 2 \
|
|
--enc_in 1 \
|
|
--c_out 1 \
|
|
--batch_size 16 \
|
|
--d_model 128 \
|
|
--expand 2 \
|
|
--d_conv 4 \
|
|
--d_state 64 \
|
|
--headdim 64 \
|
|
--ngroups 1 \
|
|
--chunk_size 256 \
|
|
--dropout 0.1 \
|
|
--des 'Exp' \
|
|
--itr 1 \
|
|
--learning_rate 0.001 \
|
|
--loss 'SMAPE'
|
|
|
|
# M4 Hourly
|
|
python -u run.py \
|
|
--task_name short_term_forecast \
|
|
--is_training 1 \
|
|
--root_path ./dataset/m4 \
|
|
--seasonal_patterns 'Hourly' \
|
|
--model_id m4_Hourly \
|
|
--model $model_name \
|
|
--data m4 \
|
|
--features M \
|
|
--e_layers 2 \
|
|
--enc_in 1 \
|
|
--c_out 1 \
|
|
--batch_size 16 \
|
|
--d_model 128 \
|
|
--expand 2 \
|
|
--d_conv 4 \
|
|
--d_state 64 \
|
|
--headdim 64 \
|
|
--ngroups 1 \
|
|
--chunk_size 256 \
|
|
--dropout 0.1 \
|
|
--des 'Exp' \
|
|
--itr 1 \
|
|
--learning_rate 0.001 \
|
|
--loss 'SMAPE' |