204 lines
8.9 KiB
Python
204 lines
8.9 KiB
Python
import torch
|
||
import torch.nn as nn
|
||
import torch.nn.functional as F
|
||
|
||
from mamba_ssm import Mamba2
|
||
|
||
|
||
class ValueEmbedding(nn.Module):
|
||
"""
|
||
对每个时间步的单通道标量做线性投影到 d_model,并可选 Dropout。
|
||
不包含 temporal embedding 和 positional embedding。
|
||
"""
|
||
def __init__(self, in_dim: int, d_model: int, dropout: float = 0.0, bias: bool = True):
|
||
super().__init__()
|
||
self.proj = nn.Linear(in_dim, d_model, bias=bias)
|
||
self.dropout = nn.Dropout(dropout) if dropout and dropout > 0.0 else nn.Identity()
|
||
|
||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||
# x: [B, L, 1] -> [B, L, d_model]
|
||
return self.dropout(self.proj(x))
|
||
|
||
|
||
class ChannelMambaBlock(nn.Module):
|
||
"""
|
||
针对单个通道的两层 Mamba-2 处理块:
|
||
- 输入: [B, L, 1],先做投影到 d_model
|
||
- 两层 Mamba2,且在第一层输出和第二层输出均添加残差连接
|
||
- 每层后接 LayerNorm
|
||
- 输出: [B, L, d_model]
|
||
"""
|
||
def __init__(self, d_model: int, dropout: float, m2_kwargs: dict):
|
||
super().__init__()
|
||
self.embed = ValueEmbedding(in_dim=1, d_model=d_model, dropout=dropout, bias=True)
|
||
|
||
# 两层 Mamba-2
|
||
self.mamba1 = Mamba2(d_model=d_model, **m2_kwargs)
|
||
self.mamba2 = Mamba2(d_model=d_model, **m2_kwargs)
|
||
|
||
# 每层后接的归一化
|
||
self.ln1 = nn.LayerNorm(d_model)
|
||
self.ln2 = nn.LayerNorm(d_model)
|
||
|
||
def forward(self, x_ch: torch.Tensor) -> torch.Tensor:
|
||
# x_ch: [B, L, 1]
|
||
x = self.embed(x_ch) # [B, L, d_model]
|
||
|
||
# 第一层 + 残差
|
||
y1 = self.mamba1(x) # [B, L, d_model]
|
||
y1 = self.ln1(x + y1) # 残差1 + LN
|
||
|
||
# 第二层 + 残差
|
||
y2 = self.mamba2(y1) # [B, L, d_model]
|
||
y2 = self.ln2(y1 + y2) # 残差2 + LN
|
||
|
||
return y2 # [B, L, d_model]
|
||
|
||
|
||
class Model(nn.Module):
|
||
"""
|
||
按通道独立处理的 Mamba-2 模型,支持:
|
||
- 分类:各通道独立提取,取最后时刻拼接 -> 分类头
|
||
- 长/短期预测:各通道独立提取,保留整段序列,经时间维线性映射到目标长度,再投影回标量并拼接
|
||
注意:预测输出通道数与输入通道数严格相同(逐通道预测)。
|
||
|
||
输入:
|
||
- x_enc: [B, L, D] 多变量时间序列
|
||
- x_mark_enc, x_dec, x_mark_dec, mask: 兼容接口参数(本模型在分类/预测中未使用这些标注)
|
||
|
||
输出:
|
||
- classification: logits [B, num_class]
|
||
- forecast: [B, pred_len, D]
|
||
"""
|
||
def __init__(self, configs):
|
||
super().__init__()
|
||
# 任务类型
|
||
self.task_name = getattr(configs, 'task_name', 'classification')
|
||
assert self.task_name in ['classification', 'long_term_forecast', 'short_term_forecast'], \
|
||
"只支持 classification / long_term_forecast / short_term_forecast"
|
||
|
||
# 基本配置
|
||
self.enc_in = configs.enc_in # 通道数 D
|
||
self.d_model = configs.d_model # 每通道的模型维度
|
||
self.num_class = getattr(configs, 'num_class', None)
|
||
self.dropout = getattr(configs, 'dropout', 0.1)
|
||
|
||
# 预测相关
|
||
self.seq_len = getattr(configs, 'seq_len', None)
|
||
self.pred_len = getattr(configs, 'pred_len', None)
|
||
if self.task_name in ['long_term_forecast', 'short_term_forecast']:
|
||
assert self.seq_len is not None and self.pred_len is not None, "预测任务需要 seq_len 与 pred_len"
|
||
# 输出通道必须与输入通道一致
|
||
self.c_out = getattr(configs, 'c_out', self.enc_in)
|
||
assert self.c_out == self.enc_in, "预测任务要求输出通道 c_out 与输入通道 enc_in 一致"
|
||
|
||
# Mamba-2 超参数
|
||
m2_kwargs = dict(
|
||
d_state=getattr(configs, 'd_state', 64),
|
||
d_conv=getattr(configs, 'd_conv', 4),
|
||
expand=getattr(configs, 'expand', 2),
|
||
headdim=getattr(configs, 'headdim', 64),
|
||
d_ssm=getattr(configs, 'd_ssm', None),
|
||
ngroups=getattr(configs, 'ngroups', 1),
|
||
A_init_range=getattr(configs, 'A_init_range', (1, 16)),
|
||
D_has_hdim=getattr(configs, 'D_has_hdim', False),
|
||
rmsnorm=getattr(configs, 'rmsnorm', True),
|
||
norm_before_gate=getattr(configs, 'norm_before_gate', False),
|
||
dt_min=getattr(configs, 'dt_min', 0.001),
|
||
dt_max=getattr(configs, 'dt_max', 0.1),
|
||
dt_init_floor=getattr(configs, 'dt_init_floor', 1e-4),
|
||
dt_limit=getattr(configs, 'dt_limit', (0.0, float("inf"))),
|
||
bias=getattr(configs, 'bias', False),
|
||
conv_bias=getattr(configs, 'conv_bias', True),
|
||
chunk_size=getattr(configs, 'chunk_size', 256),
|
||
use_mem_eff_path=getattr(configs, 'use_mem_eff_path', True),
|
||
)
|
||
|
||
# 为每个通道构建独立的两层 Mamba2 处理块
|
||
self.channel_blocks = nn.ModuleList([
|
||
ChannelMambaBlock(d_model=self.d_model, dropout=self.dropout, m2_kwargs=m2_kwargs)
|
||
for _ in range(self.enc_in)
|
||
])
|
||
|
||
# 分类头:将各通道最后时间步的表示拼接后 -> GELU -> Dropout -> Linear
|
||
if self.task_name == 'classification':
|
||
assert self.num_class is not None, "classification 需要提供 num_class"
|
||
self.act = nn.GELU()
|
||
self.head = nn.Sequential(
|
||
nn.Dropout(self.dropout),
|
||
nn.Linear(self.d_model * self.enc_in, self.num_class)
|
||
)
|
||
|
||
# 预测头:
|
||
# - 先对时间维做线性映射: [B, L, d_model] -> [B, pred_len, d_model]
|
||
# - 再将 d_model 投影为单通道标量: [B, pred_len, d_model] -> [B, pred_len, 1]
|
||
if self.task_name in ['long_term_forecast', 'short_term_forecast']:
|
||
self.predict_linear = nn.Linear(self.seq_len, self.pred_len)
|
||
self.projection = nn.Linear(self.d_model, 1, bias=True)
|
||
|
||
def classification(self, x_enc: torch.Tensor) -> torch.Tensor:
|
||
# x_enc: [B, L, D]
|
||
B, L, D = x_enc.shape
|
||
assert D == self.enc_in, f"输入通道数 {D} 与 enc_in {self.enc_in} 不一致"
|
||
|
||
per_channel_last = []
|
||
for c in range(D):
|
||
# 取出单通道序列 [B, L] -> [B, L, 1]
|
||
x_ch = x_enc[:, :, c].unsqueeze(-1)
|
||
y_ch = self.channel_blocks[c](x_ch) # [B, L, d_model]
|
||
per_channel_last.append(y_ch[:, -1, :]) # [B, d_model]
|
||
|
||
# 拼接各通道最后时刻的表示 -> [B, D * d_model]
|
||
h_last = torch.cat(per_channel_last, dim=-1)
|
||
|
||
# 分类头
|
||
logits = self.head(self.act(h_last)) # [B, num_class]
|
||
return logits
|
||
|
||
def forecast(self, x_enc: torch.Tensor) -> torch.Tensor:
|
||
"""
|
||
逐通道预测:
|
||
- 归一化(时间维),按通道独立提取
|
||
- 使用整段 Mamba 输出序列,经时间维线性映射到目标长度,再投影为标量
|
||
- 反归一化
|
||
返回:
|
||
dec_out: [B, L+pred_len, D],在 forward 中会取最后 pred_len 段
|
||
"""
|
||
B, L, D = x_enc.shape
|
||
assert L == self.seq_len, f"输入长度 {L} 与配置 seq_len {self.seq_len} 不一致"
|
||
assert D == self.enc_in, f"输入通道数 {D} 与 enc_in {self.enc_in} 不一致"
|
||
|
||
# Normalization (per Non-stationary Transformer)
|
||
means = x_enc.mean(1, keepdim=True).detach() # [B, 1, D]
|
||
x = x_enc - means
|
||
stdev = torch.sqrt(x.var(dim=1, keepdim=True, unbiased=False) + 1e-5) # [B, 1, D]
|
||
x = x / stdev
|
||
|
||
per_channel_seq = []
|
||
for c in range(D):
|
||
x_ch = x[:, :, c].unsqueeze(-1) # [B, L, 1]
|
||
h_ch = self.channel_blocks[c](x_ch) # [B, L, d_model]
|
||
# 时间维映射到 L + pred_len
|
||
h_ch = self.predict_linear(h_ch.permute(0, 2, 1)).permute(0, 2, 1) # [B, L+pred_len, d_model]
|
||
# 投影回单通道
|
||
y_ch = self.projection(h_ch) # [B, L+pred_len, 1]
|
||
per_channel_seq.append(y_ch)
|
||
|
||
# 拼接通道
|
||
dec_out = torch.cat(per_channel_seq, dim=-1) # [B, pred_len, D]
|
||
|
||
# De-normalization
|
||
dec_out = dec_out * stdev[:, 0, :].unsqueeze(1) + means[:, 0, :].unsqueeze(1)
|
||
|
||
return dec_out
|
||
|
||
# 与 TimesNet 的 forward 签名保持一致;忽略 x_mark_enc / x_dec / x_mark_dec / mask
|
||
def forward(self, x_enc, x_mark_enc=None, x_dec=None, x_mark_dec=None, mask=None):
|
||
if self.task_name in ['long_term_forecast', 'short_term_forecast']:
|
||
dec_out = self.forecast(x_enc) # [B, L+pred_len, D]
|
||
return dec_out[:, -self.pred_len:, :] # 仅返回预测部分 [B, pred_len, D]
|
||
elif self.task_name == 'classification':
|
||
return self.classification(x_enc)
|
||
else:
|
||
raise NotImplementedError(f"Unsupported task: {self.task_name}")
|