Files
TSlib/exp/exp_long_term_forecasting.py
gameloader a069c9a874 feat: add PEMS and Solar dataset support
- Add Dataset_PEMS and Dataset_Solar classes for PEMS and Solar datasets
- Update data_factory.py to include new dataset mappings
- Fix M4 dataset handling with proper numpy array dtype
- Add PEMS-specific loss function (L1Loss) and inverse transform support
- Update validation logic for PEMS dataset with inverse scaling
- Fix M4 data loader insample mask calculation bug

Changes support new traffic and solar energy datasets while maintaining
backward compatibility with existing datasets.
2025-09-03 07:01:32 +00:00

288 lines
12 KiB
Python

from data_provider.data_factory import data_provider
from exp.exp_basic import Exp_Basic
from utils.tools import EarlyStopping, adjust_learning_rate, visual
from utils.metrics import metric
import torch
import torch.nn as nn
from torch import optim
import os
import time
import warnings
import numpy as np
from utils.dtw_metric import dtw, accelerated_dtw
from utils.augmentation import run_augmentation, run_augmentation_single
warnings.filterwarnings('ignore')
class Exp_Long_Term_Forecast(Exp_Basic):
def __init__(self, args):
super(Exp_Long_Term_Forecast, self).__init__(args)
def _build_model(self):
model = self.model_dict[self.args.model].Model(self.args).float()
if self.args.use_multi_gpu and self.args.use_gpu:
model = nn.DataParallel(model, device_ids=self.args.device_ids)
return model
def _get_data(self, flag):
data_set, data_loader = data_provider(self.args, flag)
return data_set, data_loader
def _select_optimizer(self):
model_optim = optim.Adam(self.model.parameters(), lr=self.args.learning_rate)
return model_optim
def _select_criterion(self, loss_name='MSE'):
if self.args.data == 'PEMS':
return nn.L1Loss()
elif loss_name == 'MSE':
return nn.MSELoss()
elif loss_name == 'MAPE':
return mape_loss()
elif loss_name == 'MASE':
return mase_loss()
elif loss_name == 'SMAPE':
return smape_loss()
elif loss_name == 'MAE':
return nn.L1Loss(reduction='mean')
def vali(self, vali_data, vali_loader, criterion):
total_loss = []
self.model.eval()
with torch.no_grad():
for i, (batch_x, batch_y, batch_x_mark, batch_y_mark) in enumerate(vali_loader):
batch_x = batch_x.float().to(self.device)
batch_y = batch_y.float()
batch_x_mark = batch_x_mark.float().to(self.device)
batch_y_mark = batch_y_mark.float().to(self.device)
# decoder input
dec_inp = torch.zeros_like(batch_y[:, -self.args.pred_len:, :]).float()
dec_inp = torch.cat([batch_y[:, :self.args.label_len, :], dec_inp], dim=1).float().to(self.device)
# encoder - decoder
if self.args.use_amp:
with torch.cuda.amp.autocast():
outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark)
else:
outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark)
f_dim = -1 if self.args.features == 'MS' else 0
outputs = outputs[:, -self.args.pred_len:, f_dim:]
batch_y = batch_y[:, -self.args.pred_len:, f_dim:].to(self.device)
pred = outputs.detach()
true = batch_y.detach()
if self.args.data == 'PEMS':
B, T, C = pred.shape
pred = pred.cpu().numpy()
true = true.cpu().numpy()
pred = vali_data.inverse_transform(pred.reshape(-1, C)).reshape(B, T, C)
true = vali_data.inverse_transform(true.reshape(-1, C)).reshape(B, T, C)
mae, mse, rmse, mape, mspe = metric(pred, true)
total_loss.append(mae)
else:
loss = criterion(pred, true)
total_loss.append(loss.item())
total_loss = np.average(total_loss)
self.model.train()
return total_loss
def train(self, setting):
train_data, train_loader = self._get_data(flag='train')
vali_data, vali_loader = self._get_data(flag='val')
test_data, test_loader = self._get_data(flag='test')
path = os.path.join(self.args.checkpoints, setting)
if not os.path.exists(path):
os.makedirs(path)
time_now = time.time()
train_steps = len(train_loader)
early_stopping = EarlyStopping(patience=self.args.patience, verbose=True)
model_optim = self._select_optimizer()
criterion = self._select_criterion()
if self.args.use_amp:
scaler = torch.cuda.amp.GradScaler()
for epoch in range(self.args.train_epochs):
iter_count = 0
train_loss = []
self.model.train()
epoch_time = time.time()
for i, (batch_x, batch_y, batch_x_mark, batch_y_mark) in enumerate(train_loader):
iter_count += 1
model_optim.zero_grad()
batch_x = batch_x.float().to(self.device)
batch_y = batch_y.float().to(self.device)
batch_x_mark = batch_x_mark.float().to(self.device)
batch_y_mark = batch_y_mark.float().to(self.device)
# decoder input
dec_inp = torch.zeros_like(batch_y[:, -self.args.pred_len:, :]).float()
dec_inp = torch.cat([batch_y[:, :self.args.label_len, :], dec_inp], dim=1).float().to(self.device)
# encoder - decoder
if self.args.use_amp:
with torch.cuda.amp.autocast():
outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark)
f_dim = -1 if self.args.features == 'MS' else 0
outputs = outputs[:, -self.args.pred_len:, f_dim:]
batch_y = batch_y[:, -self.args.pred_len:, f_dim:].to(self.device)
loss = criterion(outputs, batch_y)
train_loss.append(loss.item())
else:
outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark)
f_dim = -1 if self.args.features == 'MS' else 0
outputs = outputs[:, -self.args.pred_len:, f_dim:]
batch_y = batch_y[:, -self.args.pred_len:, f_dim:].to(self.device)
loss = criterion(outputs, batch_y)
train_loss.append(loss.item())
if (i + 1) % 100 == 0:
print("\titers: {0}, epoch: {1} | loss: {2:.7f}".format(i + 1, epoch + 1, loss.item()))
speed = (time.time() - time_now) / iter_count
left_time = speed * ((self.args.train_epochs - epoch) * train_steps - i)
print('\tspeed: {:.4f}s/iter; left time: {:.4f}s'.format(speed, left_time))
iter_count = 0
time_now = time.time()
if self.args.use_amp:
scaler.scale(loss).backward()
scaler.step(model_optim)
scaler.update()
else:
loss.backward()
model_optim.step()
print("Epoch: {} cost time: {}".format(epoch + 1, time.time() - epoch_time))
train_loss = np.average(train_loss)
vali_loss = self.vali(vali_data, vali_loader, criterion)
test_loss = self.vali(test_data, test_loader, criterion)
print("Epoch: {0}, Steps: {1} | Train Loss: {2:.7f} Vali Loss: {3:.7f} Test Loss: {4:.7f}".format(
epoch + 1, train_steps, train_loss, vali_loss, test_loss))
early_stopping(vali_loss, self.model, path)
if early_stopping.early_stop:
print("Early stopping")
break
adjust_learning_rate(model_optim, epoch + 1, self.args)
best_model_path = path + '/' + 'checkpoint.pth'
self.model.load_state_dict(torch.load(best_model_path))
return self.model
def test(self, setting, test=0):
test_data, test_loader = self._get_data(flag='test')
if test:
print('loading model')
self.model.load_state_dict(torch.load(os.path.join('./checkpoints/' + setting, 'checkpoint.pth')))
preds = []
trues = []
folder_path = './test_results/' + setting + '/'
if not os.path.exists(folder_path):
os.makedirs(folder_path)
self.model.eval()
with torch.no_grad():
for i, (batch_x, batch_y, batch_x_mark, batch_y_mark) in enumerate(test_loader):
batch_x = batch_x.float().to(self.device)
batch_y = batch_y.float().to(self.device)
batch_x_mark = batch_x_mark.float().to(self.device)
batch_y_mark = batch_y_mark.float().to(self.device)
# decoder input
dec_inp = torch.zeros_like(batch_y[:, -self.args.pred_len:, :]).float()
dec_inp = torch.cat([batch_y[:, :self.args.label_len, :], dec_inp], dim=1).float().to(self.device)
# encoder - decoder
if self.args.use_amp:
with torch.cuda.amp.autocast():
outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark)
else:
outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark)
f_dim = -1 if self.args.features == 'MS' else 0
outputs = outputs[:, -self.args.pred_len:, :]
batch_y = batch_y[:, -self.args.pred_len:, :].to(self.device)
outputs = outputs.detach().cpu().numpy()
batch_y = batch_y.detach().cpu().numpy()
if test_data.scale and self.args.inverse:
shape = batch_y.shape
if outputs.shape[-1] != batch_y.shape[-1]:
outputs = np.tile(outputs, [1, 1, int(batch_y.shape[-1] / outputs.shape[-1])])
outputs = test_data.inverse_transform(outputs.reshape(shape[0] * shape[1], -1)).reshape(shape)
batch_y = test_data.inverse_transform(batch_y.reshape(shape[0] * shape[1], -1)).reshape(shape)
outputs = outputs[:, :, f_dim:]
batch_y = batch_y[:, :, f_dim:]
pred = outputs
true = batch_y
preds.append(pred)
trues.append(true)
if i % 20 == 0:
input = batch_x.detach().cpu().numpy()
if test_data.scale and self.args.inverse:
shape = input.shape
input = test_data.inverse_transform(input.reshape(shape[0] * shape[1], -1)).reshape(shape)
gt = np.concatenate((input[0, :, -1], true[0, :, -1]), axis=0)
pd = np.concatenate((input[0, :, -1], pred[0, :, -1]), axis=0)
visual(gt, pd, os.path.join(folder_path, str(i) + '.pdf'))
preds = np.concatenate(preds, axis=0)
trues = np.concatenate(trues, axis=0)
print('test shape:', preds.shape, trues.shape)
preds = preds.reshape(-1, preds.shape[-2], preds.shape[-1])
trues = trues.reshape(-1, trues.shape[-2], trues.shape[-1])
print('test shape:', preds.shape, trues.shape)
# result save
folder_path = './results/' + setting + '/'
if not os.path.exists(folder_path):
os.makedirs(folder_path)
# dtw calculation
if self.args.use_dtw:
dtw_list = []
manhattan_distance = lambda x, y: np.abs(x - y)
for i in range(preds.shape[0]):
x = preds[i].reshape(-1, 1)
y = trues[i].reshape(-1, 1)
if i % 100 == 0:
print("calculating dtw iter:", i)
d, _, _, _ = accelerated_dtw(x, y, dist=manhattan_distance)
dtw_list.append(d)
dtw = np.array(dtw_list).mean()
else:
dtw = 'Not calculated'
mae, mse, rmse, mape, mspe = metric(preds, trues)
print('mse:{}, mae:{}, dtw:{}'.format(mse, mae, dtw))
f = open("result_long_term_forecast.txt", 'a')
f.write(setting + " \n")
f.write('mse:{}, mae:{}, dtw:{}'.format(mse, mae, dtw))
f.write('\n')
f.write('\n')
f.close()
np.save(folder_path + 'metrics.npy', np.array([mae, mse, rmse, mape, mspe]))
np.save(folder_path + 'pred.npy', preds)
np.save(folder_path + 'true.npy', trues)
return