Files
TSlib/scripts/classification/iTransformer.sh
2025-08-28 10:17:59 +00:00

194 lines
3.7 KiB
Bash

export CUDA_VISIBLE_DEVICES=0
model_name=iTransformer
python -u run.py \
--task_name classification \
--is_training 1 \
--root_path ./dataset/EthanolConcentration/ \
--model_id EthanolConcentration \
--model $model_name \
--data UEA \
--e_layers 3 \
--batch_size 16 \
--d_model 2048 \
--d_ff 256 \
--top_k 3 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--train_epochs 100 \
--patience 10 \
--enc_in 3
python -u run.py \
--task_name classification \
--is_training 1 \
--root_path ./dataset/FaceDetection/ \
--model_id FaceDetection \
--model $model_name \
--data UEA \
--e_layers 3 \
--batch_size 16 \
--d_model 128 \
--d_ff 256 \
--top_k 3 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--train_epochs 100 \
--patience 10 \
--enc_in 3
python -u run.py \
--task_name classification \
--is_training 1 \
--root_path ./dataset/Handwriting/ \
--model_id Handwriting \
--model $model_name \
--data UEA \
--e_layers 3 \
--batch_size 16 \
--d_model 128 \
--d_ff 256 \
--top_k 3 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--train_epochs 100 \
--patience 10 \
--enc_in 3
python -u run.py \
--task_name classification \
--is_training 1 \
--root_path ./dataset/Heartbeat/ \
--model_id Heartbeat \
--model $model_name \
--data UEA \
--e_layers 3 \
--batch_size 16 \
--d_model 128 \
--d_ff 256 \
--top_k 3 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--train_epochs 100 \
--patience 10 \
--enc_in 3
python -u run.py \
--task_name classification \
--is_training 1 \
--root_path ./dataset/JapaneseVowels/ \
--model_id JapaneseVowels \
--model $model_name \
--data UEA \
--e_layers 3 \
--batch_size 16 \
--d_model 128 \
--d_ff 256 \
--top_k 3 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--train_epochs 100 \
--patience 10 \
--enc_in 3
python -u run.py \
--task_name classification \
--is_training 1 \
--root_path ./dataset/PEMS-SF/ \
--model_id PEMS-SF \
--model $model_name \
--data UEA \
--e_layers 3 \
--batch_size 16 \
--d_model 128 \
--d_ff 256 \
--top_k 3 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--train_epochs 100 \
--patience 10 \
--enc_in 3
python -u run.py \
--task_name classification \
--is_training 1 \
--root_path ./dataset/SelfRegulationSCP1/ \
--model_id SelfRegulationSCP1 \
--model $model_name \
--data UEA \
--e_layers 3 \
--batch_size 16 \
--d_model 128 \
--d_ff 256 \
--top_k 3 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--train_epochs 100 \
--patience 10 \
--enc_in 3
python -u run.py \
--task_name classification \
--is_training 1 \
--root_path ./dataset/SelfRegulationSCP2/ \
--model_id SelfRegulationSCP2 \
--model $model_name \
--data UEA \
--e_layers 3 \
--batch_size 16 \
--d_model 128 \
--d_ff 256 \
--top_k 3 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--train_epochs 100 \
--patience 10 \
--enc_in 3
python -u run.py \
--task_name classification \
--is_training 1 \
--root_path ./dataset/SpokenArabicDigits/ \
--model_id SpokenArabicDigits \
--model $model_name \
--data UEA \
--e_layers 3 \
--batch_size 16 \
--d_model 128 \
--d_ff 256 \
--top_k 3 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--train_epochs 100 \
--patience 10 \
--enc_in 3
python -u run.py \
--task_name classification \
--is_training 1 \
--root_path ./dataset/UWaveGestureLibrary/ \
--model_id UWaveGestureLibrary \
--model $model_name \
--data UEA \
--e_layers 3 \
--batch_size 16 \
--d_model 128 \
--d_ff 256 \
--top_k 3 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--train_epochs 100 \
--patience 10 \
--enc_in 3