232 lines
9.3 KiB
Python
232 lines
9.3 KiB
Python
import math
|
||
import torch
|
||
import torch.nn as nn
|
||
import torch.nn.functional as F
|
||
|
||
class HardConcreteGate(nn.Module):
|
||
"""
|
||
Hard-Concrete gate for L0-style sparsity (Louizos et al., 2017).
|
||
Produces z in [0,1] without row-wise normalization.
|
||
"""
|
||
def __init__(self, shape, temperature=2./3., gamma=-0.1, zeta=1.1, init_log_alpha=-2.0):
|
||
super().__init__()
|
||
self.log_alpha = nn.Parameter(torch.full(shape, init_log_alpha))
|
||
self.temperature = temperature
|
||
self.gamma = gamma
|
||
self.zeta = zeta
|
||
|
||
def sample(self, training=True):
|
||
if training:
|
||
u = torch.rand_like(self.log_alpha)
|
||
s = torch.sigmoid((self.log_alpha + torch.log(u) - torch.log(1 - u)) / self.temperature)
|
||
else:
|
||
# deterministic mean gate at eval
|
||
s = torch.sigmoid(self.log_alpha)
|
||
s_bar = s * (self.zeta - self.gamma) + self.gamma
|
||
z = torch.clamp(s_bar, 0., 1.)
|
||
return z
|
||
|
||
def expected_l0(self):
|
||
"""
|
||
E[1_{z>0}] closed-form for hard-concrete.
|
||
Useful for L0 penalty: lambda * expected_l0.sum()
|
||
"""
|
||
# s > t0 => z > 0, where t0 = -gamma / (zeta - gamma)
|
||
t0 = -self.gamma / (self.zeta - self.gamma)
|
||
# logit(t0)
|
||
logit_t0 = math.log(t0) - math.log(1 - t0)
|
||
# P(x > logit_t0) with x ~ Logistic(loc=log_alpha, scale=temperature)
|
||
p_open = torch.sigmoid((self.log_alpha - logit_t0) / self.temperature)
|
||
return p_open
|
||
|
||
class HierarchicalGraphMixer(nn.Module):
|
||
"""
|
||
使用 Hard-Concrete 边门控的分层图混合器:
|
||
- Level 1: 非归一化、可阈值、可为空的通道图
|
||
- Level 2: 仅在被选中的边上做 Patch 级别交叉注意力
|
||
输入: z [B, C, N, D]
|
||
输出: z_out 同形状
|
||
"""
|
||
def __init__(
|
||
self,
|
||
n_channel: int,
|
||
dim: int,
|
||
max_degree: int = None, # 可选:限制每行最多边数
|
||
thr: float = 0.5, # 保留边阈值,例如 0.5/0.7
|
||
thr_min: float = None, # 动态阈值起点,不传则用 thr
|
||
thr_max: float = None, # 动态阈值终点,不传则用 thr
|
||
thr_steps: int = 0, # 从 thr_min -> thr_max 的步数,>0 时启用动态调度
|
||
thr_schedule: str = "linear", # "linear" | "cosine" | "exp"
|
||
temperature: float = 2./3.,
|
||
tau_attn: float = 1.0, # Patch attention 温度(可选)
|
||
symmetric: bool = True, # 是否对称化通道图
|
||
degree_rescale: str = "none", # "none" | "count" | "count-sqrt" | "sum"
|
||
init_log_alpha: float = -2.0
|
||
):
|
||
super().__init__()
|
||
self.C = n_channel
|
||
self.dim = dim
|
||
self.max_degree = max_degree
|
||
self.thr = thr
|
||
self.tau_attn = tau_attn
|
||
self.symmetric = symmetric
|
||
self.degree_rescale = degree_rescale
|
||
self.thr_min = thr if (thr_min is None) else float(thr_min)
|
||
self.thr_max = thr if (thr_max is None) else float(thr_max)
|
||
self.thr_steps = int(thr_steps) if thr_steps is not None else 0
|
||
self.thr_schedule = thr_schedule
|
||
self._use_dynamic_thr = (self.thr_steps > 0) and (abs(self.thr_max - self.thr_min) > 1e-12)
|
||
# 用 buffer 记录已步进次数(不保存到权重里)
|
||
self.register_buffer("_thr_step", torch.zeros((), dtype=torch.long), persistent=False)
|
||
|
||
# Level 1: 非归一化门控
|
||
self.gate = HardConcreteGate(
|
||
shape=(n_channel, n_channel),
|
||
temperature=temperature,
|
||
init_log_alpha=init_log_alpha
|
||
)
|
||
|
||
# 可选 SE(你原来的 se 可以用来生成样本相关的通道优先级,但这里先保留接口)
|
||
self.se = nn.Sequential(
|
||
nn.Linear(dim, dim // 4, bias=False), nn.SiLU(),
|
||
nn.Linear(dim // 4, 1, bias=False), nn.Sigmoid()
|
||
)
|
||
|
||
# Level 2: Patch Cross-Attention
|
||
self.q_proj = nn.Linear(dim, dim)
|
||
self.k_proj = nn.Linear(dim, dim)
|
||
self.v_proj = nn.Linear(dim, dim)
|
||
self.out_proj = nn.Linear(dim, dim)
|
||
self.norm = nn.LayerNorm(dim)
|
||
|
||
def _compute_thr_by_progress(self, progress: float) -> float:
|
||
# progress in [0,1]
|
||
progress = max(0.0, min(1.0, float(progress)))
|
||
if self.thr_schedule == "linear":
|
||
g = progress
|
||
elif self.thr_schedule == "cosine":
|
||
# 慢起步,后期加速
|
||
import math
|
||
g = 0.5 - 0.5 * math.cos(math.pi * progress)
|
||
elif self.thr_schedule == "exp":
|
||
# 更快从 thr_min 过渡到 thr_max(指数式)
|
||
import math
|
||
k = 5.0
|
||
g = (math.exp(k * progress) - 1.0) / (math.exp(k) - 1.0)
|
||
else:
|
||
g = progress
|
||
return self.thr_min + (self.thr_max - self.thr_min) * g
|
||
def _maybe_update_thr(self):
|
||
if self.training and self._use_dynamic_thr:
|
||
step = int(self._thr_step.item())
|
||
progress = step / float(self.thr_steps)
|
||
self.thr = float(self._compute_thr_by_progress(progress))
|
||
self._thr_step += 1
|
||
|
||
def _build_sparse_neighbors(self, z_gate):
|
||
"""
|
||
基于 z_gate 构造每行的邻接列表(按阈值与可选top-k)。
|
||
返回:
|
||
- idx_list: 长度C的list,每项是LongTensor[idx_j]
|
||
- w_list: 长度C的list,每项是FloatTensor[w_j](非归一化)
|
||
"""
|
||
C = z_gate.size(0)
|
||
# 去对角
|
||
z_gate = z_gate.clone()
|
||
z_gate.fill_diagonal_(0.0)
|
||
|
||
if self.symmetric:
|
||
z_gate = 0.5 * (z_gate + z_gate.t())
|
||
z_gate.fill_diagonal_(0.0)
|
||
|
||
idx_list, w_list = [], []
|
||
for i in range(C):
|
||
row = z_gate[i] # [C]
|
||
# 阈值筛选
|
||
mask = row > self.thr
|
||
if mask.any():
|
||
vals = row[mask]
|
||
idxs = torch.nonzero(mask, as_tuple=False).squeeze(-1)
|
||
# 可选最多度数限制
|
||
if (self.max_degree is not None) and (idxs.numel() > self.max_degree):
|
||
topk = torch.topk(vals, k=self.max_degree, dim=0)
|
||
vals = topk.values
|
||
idxs = idxs[topk.indices]
|
||
else:
|
||
idxs = torch.empty((0,), dtype=torch.long, device=row.device)
|
||
vals = torch.empty((0,), dtype=row.dtype, device=row.device)
|
||
idx_list.append(idxs)
|
||
w_list.append(vals)
|
||
return idx_list, w_list
|
||
|
||
def _degree_rescale(self, ctx, w_sel):
|
||
"""
|
||
非归一化聚合的稳定性处理。可选对聚合值做degree归一化以稳定数值。
|
||
ctx: [B, k, N, D]
|
||
w_sel: [k]
|
||
"""
|
||
if self.degree_rescale == "none":
|
||
return (ctx * w_sel.view(1, -1, 1, 1)).sum(dim=1)
|
||
elif self.degree_rescale == "count":
|
||
k = max(1, w_sel.numel())
|
||
return (ctx * w_sel.view(1, -1, 1, 1)).sum(dim=1) / float(k)
|
||
elif self.degree_rescale == "count-sqrt":
|
||
k = max(1, w_sel.numel())
|
||
return (ctx * w_sel.view(1, -1, 1, 1)).sum(dim=1) / math.sqrt(k)
|
||
elif self.degree_rescale == "sum":
|
||
s = float(w_sel.sum().clamp(min=1e-6))
|
||
return (ctx * w_sel.view(1, -1, 1, 1)).sum(dim=1) / s
|
||
else:
|
||
return (ctx * w_sel.view(1, -1, 1, 1)).sum(dim=1)
|
||
|
||
def l0_loss(self, lam: float = 1e-4):
|
||
"""
|
||
期望L0正则:鼓励稀疏邻接(可调强度)。
|
||
"""
|
||
return lam * self.gate.expected_l0().sum()
|
||
|
||
def forward(self, z):
|
||
self._maybe_update_thr()
|
||
# z: [B, C, N, D]
|
||
B, C, N, D = z.shape
|
||
assert C == self.C and D == self.dim
|
||
|
||
# Level 1: 采样非归一化门 z_gate ∈ [0,1]
|
||
z_gate = self.gate.sample(training=self.training) # [C, C]
|
||
|
||
# 构建稀疏邻居(阈值 + 可选 top-k)
|
||
idx_list, w_list = self._build_sparse_neighbors(z_gate)
|
||
|
||
# Level 2: 仅对被保留的边做跨通道 Patch 交互
|
||
out_z = torch.zeros_like(z)
|
||
|
||
for i in range(C):
|
||
target_z = z[:, i, :, :] # [B, N, D]
|
||
idx = idx_list[i]
|
||
if idx.numel() == 0:
|
||
# 空邻域:允许“没有相关通道”,仅残差/归一化
|
||
out_z[:, i, :, :] = self.norm(target_z)
|
||
continue
|
||
|
||
w_sel = w_list[i] # [k], 非归一化权重,范围[0,1]
|
||
k_i = idx.numel()
|
||
|
||
source_z = z[:, idx, :, :] # [B, k, N, D]
|
||
|
||
Q = self.q_proj(target_z) # [B, N, D]
|
||
K = self.k_proj(source_z.reshape(B * k_i, N, D)).reshape(B, k_i, N, D)
|
||
V = self.v_proj(source_z.reshape(B * k_i, N, D)).reshape(B, k_i, N, D)
|
||
|
||
# 跨通道 patch 注意力
|
||
attn_scores = torch.einsum('bnd,bkmd->bknm', Q, K) / math.sqrt(D)
|
||
if self.tau_attn != 1.0:
|
||
attn_scores = attn_scores / self.tau_attn
|
||
attn_probs = F.softmax(attn_scores, dim=-1) # [B, k, N, N]
|
||
context = torch.einsum('bknm,bkmd->bknd', attn_probs, V) # [B, k, N, D]
|
||
|
||
# 非归一化通道权重聚合 + 可选度归一化(仅数值稳定,不改变“非归一化”的语义)
|
||
aggregated_context = self._degree_rescale(context, w_sel) # [B, N, D]
|
||
out_z[:, i, :, :] = self.norm(target_z + self.out_proj(aggregated_context))
|
||
|
||
return out_z
|