136 lines
2.5 KiB
Bash
136 lines
2.5 KiB
Bash
export CUDA_VISIBLE_DEVICES=1
|
|
|
|
model_name=LightTS
|
|
|
|
python -u run.py \
|
|
--task_name short_term_forecast \
|
|
--is_training 1 \
|
|
--root_path ./dataset/m4 \
|
|
--seasonal_patterns 'Monthly' \
|
|
--model_id m4_Monthly \
|
|
--model $model_name \
|
|
--data m4 \
|
|
--features M \
|
|
--e_layers 2 \
|
|
--d_layers 1 \
|
|
--factor 3 \
|
|
--enc_in 1 \
|
|
--dec_in 1 \
|
|
--c_out 1 \
|
|
--batch_size 16 \
|
|
--d_model 512 \
|
|
--des 'Exp' \
|
|
--itr 1 \
|
|
--learning_rate 0.001 \
|
|
--loss 'SMAPE'
|
|
|
|
python -u run.py \
|
|
--task_name short_term_forecast \
|
|
--is_training 1 \
|
|
--root_path ./dataset/m4 \
|
|
--seasonal_patterns 'Yearly' \
|
|
--model_id m4_Yearly \
|
|
--model $model_name \
|
|
--data m4 \
|
|
--features M \
|
|
--e_layers 2 \
|
|
--d_layers 1 \
|
|
--factor 3 \
|
|
--enc_in 1 \
|
|
--dec_in 1 \
|
|
--c_out 1 \
|
|
--batch_size 16 \
|
|
--d_model 512 \
|
|
--des 'Exp' \
|
|
--itr 1 \
|
|
--learning_rate 0.001 \
|
|
--loss 'SMAPE'
|
|
|
|
python -u run.py \
|
|
--task_name short_term_forecast \
|
|
--is_training 1 \
|
|
--root_path ./dataset/m4 \
|
|
--seasonal_patterns 'Quarterly' \
|
|
--model_id m4_Quarterly \
|
|
--model $model_name \
|
|
--data m4 \
|
|
--features M \
|
|
--e_layers 2 \
|
|
--d_layers 1 \
|
|
--factor 3 \
|
|
--enc_in 1 \
|
|
--dec_in 1 \
|
|
--c_out 1 \
|
|
--batch_size 16 \
|
|
--d_model 512 \
|
|
--des 'Exp' \
|
|
--itr 1 \
|
|
--learning_rate 0.001 \
|
|
--loss 'SMAPE'
|
|
|
|
python -u run.py \
|
|
--task_name short_term_forecast \
|
|
--is_training 1 \
|
|
--root_path ./dataset/m4 \
|
|
--seasonal_patterns 'Weekly' \
|
|
--model_id m4_Weekly \
|
|
--model $model_name \
|
|
--data m4 \
|
|
--features M \
|
|
--e_layers 2 \
|
|
--d_layers 1 \
|
|
--factor 3 \
|
|
--enc_in 1 \
|
|
--dec_in 1 \
|
|
--c_out 1 \
|
|
--batch_size 16 \
|
|
--d_model 512 \
|
|
--des 'Exp' \
|
|
--itr 1 \
|
|
--learning_rate 0.001 \
|
|
--loss 'SMAPE'
|
|
|
|
python -u run.py \
|
|
--task_name short_term_forecast \
|
|
--is_training 1 \
|
|
--root_path ./dataset/m4 \
|
|
--seasonal_patterns 'Daily' \
|
|
--model_id m4_Daily \
|
|
--model $model_name \
|
|
--data m4 \
|
|
--features M \
|
|
--e_layers 2 \
|
|
--d_layers 1 \
|
|
--factor 3 \
|
|
--enc_in 1 \
|
|
--dec_in 1 \
|
|
--c_out 1 \
|
|
--batch_size 16 \
|
|
--d_model 512 \
|
|
--des 'Exp' \
|
|
--itr 1 \
|
|
--learning_rate 0.001 \
|
|
--loss 'SMAPE'
|
|
|
|
python -u run.py \
|
|
--task_name short_term_forecast \
|
|
--is_training 1 \
|
|
--root_path ./dataset/m4 \
|
|
--seasonal_patterns 'Hourly' \
|
|
--model_id m4_Hourly \
|
|
--model $model_name \
|
|
--data m4 \
|
|
--features M \
|
|
--e_layers 2 \
|
|
--d_layers 1 \
|
|
--factor 3 \
|
|
--enc_in 1 \
|
|
--dec_in 1 \
|
|
--c_out 1 \
|
|
--batch_size 16 \
|
|
--d_model 512 \
|
|
--des 'Exp' \
|
|
--itr 1 \
|
|
--learning_rate 0.001 \
|
|
--loss 'SMAPE'
|