Files
2025-08-28 10:17:59 +00:00

100 lines
1.8 KiB
Bash

export CUDA_VISIBLE_DEVICES=2
model_name=TimesNet
python -u run.py \
--task_name long_term_forecast \
--is_training 1 \
--root_path ./dataset/ETT-small/ \
--data_path ETTm1.csv \
--model_id ETTm1_96_96 \
--model $model_name \
--data ETTm1 \
--features M \
--seq_len 96 \
--label_len 48 \
--pred_len 96 \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 7 \
--dec_in 7 \
--c_out 7 \
--des 'Exp' \
--d_model 64 \
--d_ff 64 \
--top_k 5 \
--itr 1
python -u run.py \
--task_name long_term_forecast \
--is_training 1 \
--root_path ./dataset/ETT-small/ \
--data_path ETTm1.csv \
--model_id ETTm1_96_192 \
--model $model_name \
--data ETTm1 \
--features M \
--seq_len 96 \
--label_len 48 \
--pred_len 192 \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 7 \
--dec_in 7 \
--c_out 7 \
--des 'Exp' \
--d_model 64 \
--d_ff 64 \
--top_k 5 \
--itr 1
python -u run.py \
--task_name long_term_forecast \
--is_training 1 \
--root_path ./dataset/ETT-small/ \
--data_path ETTm1.csv \
--model_id ETTm1_96_336 \
--model $model_name \
--data ETTm1 \
--features M \
--seq_len 96 \
--label_len 48 \
--pred_len 336 \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 7 \
--dec_in 7 \
--c_out 7 \
--des 'Exp' \
--d_model 16 \
--d_ff 32 \
--top_k 5 \
--itr 1 \
--train_epochs 3
python -u run.py \
--task_name long_term_forecast \
--is_training 1 \
--root_path ./dataset/ETT-small/ \
--data_path ETTm1.csv \
--model_id ETTm1_96_720 \
--model $model_name \
--data ETTm1 \
--features M \
--seq_len 96 \
--label_len 48 \
--pred_len 720 \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 7 \
--dec_in 7 \
--c_out 7 \
--des 'Exp' \
--d_model 16 \
--d_ff 32 \
--top_k 5 \
--itr 1