#!/bin/bash # vanillaMamba Classification Training Script for Multiple Datasets export CUDA_VISIBLE_DEVICES=0 model_name=vanillaMamba # Create results directory if it doesn't exist mkdir -p ./results # UWaveGestureLibrary dataset (seq_len=315, enc_in=3) - use Copy1 config python -u run.py \ --task_name classification \ --is_training 1 \ --root_path ./dataset/UWaveGestureLibrary/ \ --model_id UWaveGestureLibrary \ --model $model_name \ --data UEA \ --e_layers 2 \ --batch_size 64 \ --seq_len 315 \ --enc_in 3 \ --d_model 128 \ --d_state 64 \ --d_conv 4 \ --expand 2 \ --headdim 128 \ --dropout 0.1 \ --des 'vanillaMamba_UWaveGestureLibrary' \ --itr 1 \ --learning_rate 0.002 \ --train_epochs 150 \ --patience 30 \ --revin 0 | tee ./results/vanillaMamba_UWaveGestureLibrary.log # EthanolConcentration dataset (seq_len=1751, enc_in=3) - use Copy1 config python -u run.py \ --task_name classification \ --is_training 3 \ --root_path ./dataset/EthanolConcentration/ \ --model_id EthanolConcentration \ --model $model_name \ --data UEA \ --e_layers 2 \ --batch_size 64 \ --seq_len 1751 \ --enc_in 4 \ --d_model 128 \ --d_state 64 \ --d_conv 4 \ --expand 2 \ --headdim 64 \ --dropout 0.1 \ --des 'vanillaMamba_EthanolConcentration' \ --itr 1 \ --learning_rate 0.001 \ --train_epochs 200 \ --patience 30 \ --revin 0 | tee ./results/vanillaMamba_EthanolConcentration.log # Handwriting dataset (seq_len=152, enc_in=3) - use Copy1 config python -u run.py \ --task_name classification \ --is_training 1 \ --root_path ./dataset/Handwriting/ \ --model_id Handwriting \ --model $model_name \ --data UEA \ --e_layers 4 \ --batch_size 64 \ --seq_len 152 \ --enc_in 3 \ --d_model 128 \ --d_state 64 \ --d_conv 4 \ --expand 2 \ --headdim 64 \ --dropout 0.1 \ --des 'vanillaMamba_Handwriting' \ --itr 1 \ --learning_rate 0.001 \ --train_epochs 200 \ --patience 30 \ --revin 0 | tee ./results/vanillaMamba_Handwriting.log # JapaneseVowels dataset (seq_len=29, enc_in=12) - use Copy1 config python -u run.py \ --task_name classification \ --is_training 1 \ --root_path ./dataset/JapaneseVowels/ \ --model_id JapaneseVowels \ --model $model_name \ --data UEA \ --e_layers 3 \ --batch_size 64 \ --seq_len 29 \ --enc_in 12 \ --d_model 128 \ --d_state 64 \ --d_conv 4 \ --expand 2 \ --headdim 64 \ --dropout 0.1 \ --des 'vanillaMamba_JapaneseVowels' \ --itr 1 \ --learning_rate 0.0005 \ --train_epochs 100 \ --patience 30 \ --revin 0 | tee ./results/vanillaMamba_JapaneseVowels.log # PEMS-SF dataset (seq_len=144, enc_in=963) - use Copy1 config python -u run.py \ --task_name classification \ --is_training 1 \ --root_path ./dataset/PEMS-SF/ \ --model_id PEMS-SF \ --model $model_name \ --data UEA \ --e_layers 3 \ --batch_size 16 \ --seq_len 144 \ --enc_in 963 \ --d_model 128 \ --d_state 64 \ --d_conv 4 \ --expand 2 \ --headdim 64 \ --dropout 0.1 \ --des 'vanillaMamba_PEMS-SF' \ --itr 1 \ --learning_rate 0.001 \ --train_epochs 150 \ --patience 30 \ --revin 0 | tee ./results/vanillaMamba_PEMS-SF.log # Heartbeat dataset (seq_len=405, enc_in=61) - use original config python -u run.py \ --task_name classification \ --is_training 1 \ --root_path ./dataset/Heartbeat/ \ --model_id Heartbeat \ --model $model_name \ --data UEA \ --e_layers 3 \ --batch_size 64 \ --seq_len 405 \ --enc_in 61 \ --d_model 128 \ --d_state 64 \ --d_conv 4 \ --expand 2 \ --headdim 64 \ --dropout 0.1 \ --des 'vanillaMamba_Heartbeat' \ --itr 1 \ --learning_rate 0.001 \ --train_epochs 150 \ --patience 10 \ --revin 0 | tee ./results/vanillaMamba_Heartbeat.log # FaceDetection dataset (seq_len=62, enc_in=144) - use original config python -u run.py \ --task_name classification \ --is_training 1 \ --root_path ./dataset/FaceDetection/ \ --model_id FaceDetection \ --model $model_name \ --data UEA \ --e_layers 3 \ --batch_size 64 \ --seq_len 62 \ --enc_in 144 \ --d_model 128 \ --d_state 64 \ --d_conv 4 \ --expand 2 \ --headdim 64 \ --dropout 0.1 \ --des 'vanillaMamba_FaceDetection' \ --itr 1 \ --learning_rate 0.001 \ --train_epochs 100 \ --patience 10 \ --revin 0 | tee ./results/vanillaMamba_FaceDetection.log # SelfRegulationSCP1 dataset (seq_len=896, enc_in=6) - use original config python -u run.py \ --task_name classification \ --is_training 1 \ --root_path ./dataset/SelfRegulationSCP1/ \ --model_id SelfRegulationSCP1 \ --model $model_name \ --data UEA \ --e_layers 3 \ --batch_size 64 \ --seq_len 896 \ --enc_in 6 \ --d_model 128 \ --d_state 64 \ --d_conv 4 \ --expand 2 \ --headdim 64 \ --dropout 0.1 \ --des 'vanillaMamba_SelfRegulationSCP1' \ --itr 1 \ --learning_rate 0.001 \ --train_epochs 100 \ --patience 10 \ --revin 0 | tee ./results/vanillaMamba_SelfRegulationSCP1.log # SelfRegulationSCP2 dataset (seq_len=1152, enc_in=7) - use original config python -u run.py \ --task_name classification \ --is_training 1 \ --root_path ./dataset/SelfRegulationSCP2/ \ --model_id SelfRegulationSCP2 \ --model $model_name \ --data UEA \ --e_layers 3 \ --batch_size 64 \ --seq_len 1152 \ --enc_in 7 \ --d_model 128 \ --d_state 64 \ --d_conv 4 \ --expand 2 \ --headdim 64 \ --dropout 0.1 \ --des 'vanillaMamba_SelfRegulationSCP2' \ --itr 1 \ --learning_rate 0.001 \ --train_epochs 100 \ --patience 10 \ --revin 0 | tee ./results/vanillaMamba_SelfRegulationSCP2.log # SpokenArabicDigits dataset (seq_len=93, enc_in=13) - use original config python -u run.py \ --task_name classification \ --is_training 1 \ --root_path ./dataset/SpokenArabicDigits/ \ --model_id SpokenArabicDigits \ --model $model_name \ --data UEA \ --e_layers 3 \ --batch_size 64 \ --seq_len 93 \ --enc_in 13 \ --d_model 128 \ --d_state 64 \ --d_conv 4 \ --expand 2 \ --headdim 64 \ --dropout 0.1 \ --des 'vanillaMamba_SpokenArabicDigits' \ --itr 1 \ --learning_rate 0.001 \ --train_epochs 100 \ --patience 10 \ --revin 0 | tee ./results/vanillaMamba_SpokenArabicDigits.log