import torch import torch.nn as nn import torch.nn.functional as F import matplotlib.pyplot as plt import numpy as np import math from math import sqrt import os class AutoCorrelation(nn.Module): """ AutoCorrelation Mechanism with the following two phases: (1) period-based dependencies discovery (2) time delay aggregation This block can replace the self-attention family mechanism seamlessly. """ def __init__(self, mask_flag=True, factor=1, scale=None, attention_dropout=0.1, output_attention=False): super(AutoCorrelation, self).__init__() self.factor = factor self.scale = scale self.mask_flag = mask_flag self.output_attention = output_attention self.dropout = nn.Dropout(attention_dropout) def time_delay_agg_training(self, values, corr): """ SpeedUp version of Autocorrelation (a batch-normalization style design) This is for the training phase. """ head = values.shape[1] channel = values.shape[2] length = values.shape[3] # find top k top_k = int(self.factor * math.log(length)) mean_value = torch.mean(torch.mean(corr, dim=1), dim=1) index = torch.topk(torch.mean(mean_value, dim=0), top_k, dim=-1)[1] weights = torch.stack([mean_value[:, index[i]] for i in range(top_k)], dim=-1) # update corr tmp_corr = torch.softmax(weights, dim=-1) # aggregation tmp_values = values delays_agg = torch.zeros_like(values).float() for i in range(top_k): pattern = torch.roll(tmp_values, -int(index[i]), -1) delays_agg = delays_agg + pattern * \ (tmp_corr[:, i].unsqueeze(1).unsqueeze(1).unsqueeze(1).repeat(1, head, channel, length)) return delays_agg def time_delay_agg_inference(self, values, corr): """ SpeedUp version of Autocorrelation (a batch-normalization style design) This is for the inference phase. """ batch = values.shape[0] head = values.shape[1] channel = values.shape[2] length = values.shape[3] # index init init_index = torch.arange(length).unsqueeze(0).unsqueeze(0).unsqueeze(0).repeat(batch, head, channel, 1).to(values.device) # find top k top_k = int(self.factor * math.log(length)) mean_value = torch.mean(torch.mean(corr, dim=1), dim=1) weights, delay = torch.topk(mean_value, top_k, dim=-1) # update corr tmp_corr = torch.softmax(weights, dim=-1) # aggregation tmp_values = values.repeat(1, 1, 1, 2) delays_agg = torch.zeros_like(values).float() for i in range(top_k): tmp_delay = init_index + delay[:, i].unsqueeze(1).unsqueeze(1).unsqueeze(1).repeat(1, head, channel, length) pattern = torch.gather(tmp_values, dim=-1, index=tmp_delay) delays_agg = delays_agg + pattern * \ (tmp_corr[:, i].unsqueeze(1).unsqueeze(1).unsqueeze(1).repeat(1, head, channel, length)) return delays_agg def time_delay_agg_full(self, values, corr): """ Standard version of Autocorrelation """ batch = values.shape[0] head = values.shape[1] channel = values.shape[2] length = values.shape[3] # index init init_index = torch.arange(length).unsqueeze(0).unsqueeze(0).unsqueeze(0).repeat(batch, head, channel, 1).to(values.device) # find top k top_k = int(self.factor * math.log(length)) weights, delay = torch.topk(corr, top_k, dim=-1) # update corr tmp_corr = torch.softmax(weights, dim=-1) # aggregation tmp_values = values.repeat(1, 1, 1, 2) delays_agg = torch.zeros_like(values).float() for i in range(top_k): tmp_delay = init_index + delay[..., i].unsqueeze(-1) pattern = torch.gather(tmp_values, dim=-1, index=tmp_delay) delays_agg = delays_agg + pattern * (tmp_corr[..., i].unsqueeze(-1)) return delays_agg def forward(self, queries, keys, values, attn_mask): B, L, H, E = queries.shape _, S, _, D = values.shape if L > S: zeros = torch.zeros_like(queries[:, :(L - S), :]).float() values = torch.cat([values, zeros], dim=1) keys = torch.cat([keys, zeros], dim=1) else: values = values[:, :L, :, :] keys = keys[:, :L, :, :] # period-based dependencies q_fft = torch.fft.rfft(queries.permute(0, 2, 3, 1).contiguous(), dim=-1) k_fft = torch.fft.rfft(keys.permute(0, 2, 3, 1).contiguous(), dim=-1) res = q_fft * torch.conj(k_fft) corr = torch.fft.irfft(res, dim=-1) # time delay agg if self.training: V = self.time_delay_agg_training(values.permute(0, 2, 3, 1).contiguous(), corr).permute(0, 3, 1, 2) else: V = self.time_delay_agg_inference(values.permute(0, 2, 3, 1).contiguous(), corr).permute(0, 3, 1, 2) if self.output_attention: return (V.contiguous(), corr.permute(0, 3, 1, 2)) else: return (V.contiguous(), None) class AutoCorrelationLayer(nn.Module): def __init__(self, correlation, d_model, n_heads, d_keys=None, d_values=None): super(AutoCorrelationLayer, self).__init__() d_keys = d_keys or (d_model // n_heads) d_values = d_values or (d_model // n_heads) self.inner_correlation = correlation self.query_projection = nn.Linear(d_model, d_keys * n_heads) self.key_projection = nn.Linear(d_model, d_keys * n_heads) self.value_projection = nn.Linear(d_model, d_values * n_heads) self.out_projection = nn.Linear(d_values * n_heads, d_model) self.n_heads = n_heads def forward(self, queries, keys, values, attn_mask): B, L, _ = queries.shape _, S, _ = keys.shape H = self.n_heads queries = self.query_projection(queries).view(B, L, H, -1) keys = self.key_projection(keys).view(B, S, H, -1) values = self.value_projection(values).view(B, S, H, -1) out, attn = self.inner_correlation( queries, keys, values, attn_mask ) out = out.view(B, L, -1) return self.out_projection(out), attn