# coding=utf-8 # author=maziqing # email=maziqing.mzq@alibaba-inc.com import numpy as np import torch import torch.nn as nn def get_frequency_modes(seq_len, modes=64, mode_select_method='random'): """ get modes on frequency domain: 'random' means sampling randomly; 'else' means sampling the lowest modes; """ modes = min(modes, seq_len // 2) if mode_select_method == 'random': index = list(range(0, seq_len // 2)) np.random.shuffle(index) index = index[:modes] else: index = list(range(0, modes)) index.sort() return index # ########## fourier layer ############# class FourierBlock(nn.Module): def __init__(self, in_channels, out_channels, n_heads, seq_len, modes=0, mode_select_method='random'): super(FourierBlock, self).__init__() print('fourier enhanced block used!') """ 1D Fourier block. It performs representation learning on frequency domain, it does FFT, linear transform, and Inverse FFT. """ # get modes on frequency domain self.index = get_frequency_modes(seq_len, modes=modes, mode_select_method=mode_select_method) print('modes={}, index={}'.format(modes, self.index)) self.n_heads = n_heads self.scale = (1 / (in_channels * out_channels)) self.weights1 = nn.Parameter( self.scale * torch.rand(self.n_heads, in_channels // self.n_heads, out_channels // self.n_heads, len(self.index), dtype=torch.float)) self.weights2 = nn.Parameter( self.scale * torch.rand(self.n_heads, in_channels // self.n_heads, out_channels // self.n_heads, len(self.index), dtype=torch.float)) # Complex multiplication def compl_mul1d(self, order, x, weights): x_flag = True w_flag = True if not torch.is_complex(x): x_flag = False x = torch.complex(x, torch.zeros_like(x).to(x.device)) if not torch.is_complex(weights): w_flag = False weights = torch.complex(weights, torch.zeros_like(weights).to(weights.device)) if x_flag or w_flag: return torch.complex(torch.einsum(order, x.real, weights.real) - torch.einsum(order, x.imag, weights.imag), torch.einsum(order, x.real, weights.imag) + torch.einsum(order, x.imag, weights.real)) else: return torch.einsum(order, x.real, weights.real) def forward(self, q, k, v, mask): # size = [B, L, H, E] B, L, H, E = q.shape x = q.permute(0, 2, 3, 1) # Compute Fourier coefficients x_ft = torch.fft.rfft(x, dim=-1) # Perform Fourier neural operations out_ft = torch.zeros(B, H, E, L // 2 + 1, device=x.device, dtype=torch.cfloat) for wi, i in enumerate(self.index): if i >= x_ft.shape[3] or wi >= out_ft.shape[3]: continue out_ft[:, :, :, wi] = self.compl_mul1d("bhi,hio->bho", x_ft[:, :, :, i], torch.complex(self.weights1, self.weights2)[:, :, :, wi]) # Return to time domain x = torch.fft.irfft(out_ft, n=x.size(-1)) return (x, None) # ########## Fourier Cross Former #################### class FourierCrossAttention(nn.Module): def __init__(self, in_channels, out_channels, seq_len_q, seq_len_kv, modes=64, mode_select_method='random', activation='tanh', policy=0, num_heads=8): super(FourierCrossAttention, self).__init__() print(' fourier enhanced cross attention used!') """ 1D Fourier Cross Attention layer. It does FFT, linear transform, attention mechanism and Inverse FFT. """ self.activation = activation self.in_channels = in_channels self.out_channels = out_channels # get modes for queries and keys (& values) on frequency domain self.index_q = get_frequency_modes(seq_len_q, modes=modes, mode_select_method=mode_select_method) self.index_kv = get_frequency_modes(seq_len_kv, modes=modes, mode_select_method=mode_select_method) print('modes_q={}, index_q={}'.format(len(self.index_q), self.index_q)) print('modes_kv={}, index_kv={}'.format(len(self.index_kv), self.index_kv)) self.scale = (1 / (in_channels * out_channels)) self.weights1 = nn.Parameter( self.scale * torch.rand(num_heads, in_channels // num_heads, out_channels // num_heads, len(self.index_q), dtype=torch.float)) self.weights2 = nn.Parameter( self.scale * torch.rand(num_heads, in_channels // num_heads, out_channels // num_heads, len(self.index_q), dtype=torch.float)) # Complex multiplication def compl_mul1d(self, order, x, weights): x_flag = True w_flag = True if not torch.is_complex(x): x_flag = False x = torch.complex(x, torch.zeros_like(x).to(x.device)) if not torch.is_complex(weights): w_flag = False weights = torch.complex(weights, torch.zeros_like(weights).to(weights.device)) if x_flag or w_flag: return torch.complex(torch.einsum(order, x.real, weights.real) - torch.einsum(order, x.imag, weights.imag), torch.einsum(order, x.real, weights.imag) + torch.einsum(order, x.imag, weights.real)) else: return torch.einsum(order, x.real, weights.real) def forward(self, q, k, v, mask): # size = [B, L, H, E] B, L, H, E = q.shape xq = q.permute(0, 2, 3, 1) # size = [B, H, E, L] xk = k.permute(0, 2, 3, 1) xv = v.permute(0, 2, 3, 1) # Compute Fourier coefficients xq_ft_ = torch.zeros(B, H, E, len(self.index_q), device=xq.device, dtype=torch.cfloat) xq_ft = torch.fft.rfft(xq, dim=-1) for i, j in enumerate(self.index_q): if j >= xq_ft.shape[3]: continue xq_ft_[:, :, :, i] = xq_ft[:, :, :, j] xk_ft_ = torch.zeros(B, H, E, len(self.index_kv), device=xq.device, dtype=torch.cfloat) xk_ft = torch.fft.rfft(xk, dim=-1) for i, j in enumerate(self.index_kv): if j >= xk_ft.shape[3]: continue xk_ft_[:, :, :, i] = xk_ft[:, :, :, j] # perform attention mechanism on frequency domain xqk_ft = (self.compl_mul1d("bhex,bhey->bhxy", xq_ft_, xk_ft_)) if self.activation == 'tanh': xqk_ft = torch.complex(xqk_ft.real.tanh(), xqk_ft.imag.tanh()) elif self.activation == 'softmax': xqk_ft = torch.softmax(abs(xqk_ft), dim=-1) xqk_ft = torch.complex(xqk_ft, torch.zeros_like(xqk_ft)) else: raise Exception('{} actiation function is not implemented'.format(self.activation)) xqkv_ft = self.compl_mul1d("bhxy,bhey->bhex", xqk_ft, xk_ft_) xqkvw = self.compl_mul1d("bhex,heox->bhox", xqkv_ft, torch.complex(self.weights1, self.weights2)) out_ft = torch.zeros(B, H, E, L // 2 + 1, device=xq.device, dtype=torch.cfloat) for i, j in enumerate(self.index_q): if i >= xqkvw.shape[3] or j >= out_ft.shape[3]: continue out_ft[:, :, :, j] = xqkvw[:, :, :, i] # Return to time domain out = torch.fft.irfft(out_ft / self.in_channels / self.out_channels, n=xq.size(-1)) return (out, None)