#export CUDA_VISIBLE_DEVICES=0 model_name=TimeMixer seq_len=96 e_layers=3 down_sampling_layers=3 down_sampling_window=2 learning_rate=0.01 d_model=16 d_ff=32 batch_size=32 train_epochs=20 patience=10 python -u run.py \ --task_name long_term_forecast \ --is_training 1 \ --root_path ./dataset/electricity/ \ --data_path electricity.csv \ --model_id ECL_$seq_len'_'96 \ --model $model_name \ --data custom \ --features M \ --seq_len $seq_len \ --label_len 0 \ --pred_len 96 \ --e_layers $e_layers \ --d_layers 1 \ --factor 3 \ --enc_in 321 \ --dec_in 321 \ --c_out 321 \ --des 'Exp' \ --itr 1 \ --d_model $d_model \ --d_ff $d_ff \ --batch_size $batch_size \ --learning_rate $learning_rate \ --train_epochs $train_epochs \ --patience $patience \ --down_sampling_layers $down_sampling_layers \ --down_sampling_method avg \ --down_sampling_window $down_sampling_window python -u run.py \ --task_name long_term_forecast \ --is_training 1 \ --root_path ./dataset/electricity/ \ --data_path electricity.csv \ --model_id ECL_$seq_len'_'192 \ --model $model_name \ --data custom \ --features M \ --seq_len $seq_len \ --label_len 0 \ --pred_len 192 \ --e_layers $e_layers \ --d_layers 1 \ --factor 3 \ --enc_in 321 \ --dec_in 321 \ --c_out 321 \ --des 'Exp' \ --itr 1 \ --d_model $d_model \ --d_ff $d_ff \ --batch_size $batch_size \ --learning_rate $learning_rate \ --train_epochs $train_epochs \ --patience $patience \ --down_sampling_layers $down_sampling_layers \ --down_sampling_method avg \ --down_sampling_window $down_sampling_window python -u run.py \ --task_name long_term_forecast \ --is_training 1 \ --root_path ./dataset/electricity/ \ --data_path electricity.csv \ --model_id ECL_$seq_len'_'336 \ --model $model_name \ --data custom \ --features M \ --seq_len $seq_len \ --label_len 0 \ --pred_len 336 \ --e_layers $e_layers \ --d_layers 1 \ --factor 3 \ --enc_in 321 \ --dec_in 321 \ --c_out 321 \ --des 'Exp' \ --itr 1 \ --d_model $d_model \ --d_ff $d_ff \ --batch_size $batch_size \ --learning_rate $learning_rate \ --train_epochs $train_epochs \ --patience $patience \ --down_sampling_layers $down_sampling_layers \ --down_sampling_method avg \ --down_sampling_window $down_sampling_window python -u run.py \ --task_name long_term_forecast \ --is_training 1 \ --root_path ./dataset/electricity/ \ --data_path electricity.csv \ --model_id ECL_$seq_len'_'720 \ --model $model_name \ --data custom \ --features M \ --seq_len $seq_len \ --label_len 0 \ --pred_len 720 \ --e_layers $e_layers \ --d_layers 1 \ --factor 3 \ --enc_in 321 \ --dec_in 321 \ --c_out 321 \ --des 'Exp' \ --itr 1 \ --d_model $d_model \ --d_ff $d_ff \ --batch_size $batch_size \ --learning_rate $learning_rate \ --train_epochs $train_epochs \ --patience $patience \ --down_sampling_layers $down_sampling_layers \ --down_sampling_method avg \ --down_sampling_window $down_sampling_window