import math import torch import torch.nn as nn import torch.nn.functional as F from mamba_ssm import Mamba from layers.Embed import DataEmbedding class Model(nn.Module): def __init__(self, configs): super(Model, self).__init__() self.task_name = configs.task_name self.pred_len = configs.pred_len self.d_inner = configs.d_model * configs.expand self.dt_rank = math.ceil(configs.d_model / 16) # TODO implement "auto" self.embedding = DataEmbedding(configs.enc_in, configs.d_model, configs.embed, configs.freq, configs.dropout) self.mamba = Mamba( d_model = configs.d_model, d_state = configs.d_ff, d_conv = configs.d_conv, expand = configs.expand, ) self.out_layer = nn.Linear(configs.d_model, configs.c_out, bias=False) def forecast(self, x_enc, x_mark_enc): mean_enc = x_enc.mean(1, keepdim=True).detach() x_enc = x_enc - mean_enc std_enc = torch.sqrt(torch.var(x_enc, dim=1, keepdim=True, unbiased=False) + 1e-5).detach() x_enc = x_enc / std_enc x = self.embedding(x_enc, x_mark_enc) x = self.mamba(x) x_out = self.out_layer(x) x_out = x_out * std_enc + mean_enc return x_out def forward(self, x_enc, x_mark_enc, x_dec, x_mark_dec, mask=None): if self.task_name in ['short_term_forecast', 'long_term_forecast']: x_out = self.forecast(x_enc, x_mark_enc) return x_out[:, -self.pred_len:, :] # other tasks not implemented