export CUDA_VISIBLE_DEVICES=0 model_name=PatchTST for aug in jitter scaling permutation magwarp timewarp windowslice windowwarp rotation spawner dtwwarp shapedtwwarp wdba discdtw discsdtw do echo using augmentation: ${aug} python -u run.py \ --task_name classification \ --is_training 1 \ --root_path ./dataset/EthanolConcentration/ \ --model_id EthanolConcentration \ --model $model_name \ --data UEA \ --e_layers 3 \ --batch_size 16 \ --d_model 128 \ --d_ff 256 \ --top_k 3 \ --des 'Exp' \ --itr 1 \ --learning_rate 0.001 \ --train_epochs 100 \ --patience 10 \ --augmentation_ratio 1 \ --${aug} done