import os import numpy as np import torch import matplotlib.pyplot as plt import pandas as pd import math plt.switch_backend('agg') def adjust_learning_rate(optimizer, epoch, args): # lr = args.learning_rate * (0.2 ** (epoch // 2)) if args.lradj == 'type1': lr_adjust = {epoch: args.learning_rate * (0.5 ** ((epoch - 1) // 1))} elif args.lradj == 'type2': lr_adjust = { 2: 5e-5, 4: 1e-5, 6: 5e-6, 8: 1e-6, 10: 5e-7, 15: 1e-7, 20: 5e-8 } elif args.lradj == 'type3': lr_adjust = {epoch: args.learning_rate if epoch < 3 else args.learning_rate * (0.9 ** ((epoch - 3) // 1))} elif args.lradj == "cosine": lr_adjust = {epoch: args.learning_rate /2 * (1 + math.cos(epoch / args.train_epochs * math.pi))} elif args.lradj == 'sigmoid': k = 0.5 # logistic growth rate s = 10 # decreasing curve smoothing rate w = 10 # warm-up coefficient lr_adjust = {epoch: args.learning_rate / (1 + np.exp(-k * (epoch - w))) - args.learning_rate / (1 + np.exp(-k/s * (epoch - w*s)))} if epoch in lr_adjust.keys(): lr = lr_adjust[epoch] for param_group in optimizer.param_groups: param_group['lr'] = lr print('Updating learning rate to {}'.format(lr)) class EarlyStopping: def __init__(self, patience=7, verbose=False, delta=0): self.patience = patience self.verbose = verbose self.counter = 0 self.best_score = None self.early_stop = False self.val_loss_min = np.inf self.delta = delta def __call__(self, val_loss, model, path): score = -val_loss if self.best_score is None: self.best_score = score self.save_checkpoint(val_loss, model, path) elif score < self.best_score + self.delta: self.counter += 1 print(f'EarlyStopping counter: {self.counter} out of {self.patience}') if self.counter >= self.patience: self.early_stop = True else: self.best_score = score self.save_checkpoint(val_loss, model, path) self.counter = 0 def save_checkpoint(self, val_loss, model, path): if self.verbose: print(f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...') torch.save(model.state_dict(), path + '/' + 'checkpoint.pth') self.val_loss_min = val_loss class dotdict(dict): """dot.notation access to dictionary attributes""" __getattr__ = dict.get __setattr__ = dict.__setitem__ __delattr__ = dict.__delitem__ class StandardScaler(): def __init__(self, mean, std): self.mean = mean self.std = std def transform(self, data): return (data - self.mean) / self.std def inverse_transform(self, data): return (data * self.std) + self.mean def visual(true, preds=None, name='./pic/test.pdf'): """ Results visualization """ plt.figure() if preds is not None: plt.plot(preds, label='Prediction', linewidth=2) plt.plot(true, label='GroundTruth', linewidth=2) plt.legend() plt.savefig(name, bbox_inches='tight') def adjustment(gt, pred): anomaly_state = False for i in range(len(gt)): if gt[i] == 1 and pred[i] == 1 and not anomaly_state: anomaly_state = True for j in range(i, 0, -1): if gt[j] == 0: break else: if pred[j] == 0: pred[j] = 1 for j in range(i, len(gt)): if gt[j] == 0: break else: if pred[j] == 0: pred[j] = 1 elif gt[i] == 0: anomaly_state = False if anomaly_state: pred[i] = 1 return gt, pred def cal_accuracy(y_pred, y_true): return np.mean(y_pred == y_true)