export CUDA_VISIBLE_DEVICES=0 model_name=PatchTST for aug in jitter scaling permutation magwarp timewarp windowslice windowwarp rotation spawner dtwwarp shapedtwwarp discdtw discsdtw do for pred_len in 96 192 336 720 do echo using augmentation: ${aug} python -u run.py \ --task_name long_term_forecast \ --is_training 1 \ --root_path ./dataset/exchange_rate/ \ --data_path exchange_rate.csv \ --model_id Exchange_96_${pred_len} \ --model $model_name \ --data custom \ --features M \ --seq_len 96 \ --label_len 48 \ --pred_len ${pred_len} \ --e_layers 2 \ --d_layers 1 \ --factor 3 \ --enc_in 8 \ --dec_in 8 \ --c_out 8 \ --des 'Exp' \ --itr 1 \ --augmentation_ratio 1 \ --${aug} done done