import torch import torch.nn as nn import numpy as np from math import sqrt from utils.masking import TriangularCausalMask, ProbMask from reformer_pytorch import LSHSelfAttention from einops import rearrange, repeat class DSAttention(nn.Module): '''De-stationary Attention''' def __init__(self, mask_flag=True, factor=5, scale=None, attention_dropout=0.1, output_attention=False): super(DSAttention, self).__init__() self.scale = scale self.mask_flag = mask_flag self.output_attention = output_attention self.dropout = nn.Dropout(attention_dropout) def forward(self, queries, keys, values, attn_mask, tau=None, delta=None, key_padding_mask=None): """ key_padding_mask: (B, S) bool, True=valid, False=pad(可选,忽略或由上层应用) """ B, L, H, E = queries.shape _, S, _, D = values.shape scale = self.scale or 1. / sqrt(E) tau = 1.0 if tau is None else tau.unsqueeze(1).unsqueeze(1) # B x 1 x 1 x 1 delta = 0.0 if delta is None else delta.unsqueeze(1).unsqueeze(1) # B x 1 x 1 x S scores = torch.einsum("blhe,bshe->bhls", queries, keys) * tau + delta # (B,H,L,S) if self.mask_flag: if attn_mask is None: attn_mask = TriangularCausalMask(B, L, device=queries.device) scores.masked_fill_(attn_mask.mask, -np.inf) # 可选:基于key_padding_mask的无效键屏蔽(不改变原行为,默认None) if key_padding_mask is not None: # key_padding_mask: True 表示有效,False为padding invalid_k = (~key_padding_mask).unsqueeze(1).unsqueeze(1) # (B,1,1,S) scores = scores.masked_fill(invalid_k, -np.inf) A = self.dropout(torch.softmax(scale * scores, dim=-1)) V = torch.einsum("bhls,bshd->blhd", A, values) if self.output_attention: return V.contiguous(), A else: return V.contiguous(), None class FullAttention(nn.Module): """ 修正点: - 新增 key_padding_mask 支持,用于屏蔽批内右侧pad的键向量(与DC变长对齐) - key_padding_mask 约定:shape=(B, S),True=有效,False=padding - 其余行为与原实现保持一致 """ def __init__(self, mask_flag=True, factor=5, scale=None, attention_dropout=0.1, output_attention=False): super(FullAttention, self).__init__() self.scale = scale self.mask_flag = mask_flag self.output_attention = output_attention self.dropout = nn.Dropout(attention_dropout) def forward(self, queries, keys, values, attn_mask, tau=None, delta=None, key_padding_mask=None): """ queries: (B, L, H, E) keys: (B, S, H, E) values: (B, S, H, D) attn_mask: TriangularCausalMask 或 None key_padding_mask: (B, S) bool,True=有效,False=padding(可选) """ B, L, H, E = queries.shape _, S, _, D = values.shape scale = self.scale or 1. / sqrt(E) scores = torch.einsum("blhe,bshe->bhls", queries, keys) # (B,H,L,S) if self.mask_flag: if attn_mask is None: attn_mask = TriangularCausalMask(B, L, device=queries.device) scores.masked_fill_(attn_mask.mask, -np.inf) # 基于key_padding_mask屏蔽无效键(padding位置不参与注意力) if key_padding_mask is not None: # key_padding_mask: True=有效,False=padding invalid_k = (~key_padding_mask).unsqueeze(1).unsqueeze(1) # (B,1,1,S) scores = scores.masked_fill(invalid_k, -np.inf) A = self.dropout(torch.softmax(scale * scores, dim=-1)) # (B,H,L,S) V = torch.einsum("bhls,bshd->blhd", A, values) # (B,L,H,D) if self.output_attention: return V.contiguous(), A else: return V.contiguous(), None class ProbAttention(nn.Module): def __init__(self, mask_flag=True, factor=5, scale=None, attention_dropout=0.1, output_attention=False): super(ProbAttention, self).__init__() self.factor = factor self.scale = scale self.mask_flag = mask_flag self.output_attention = output_attention self.dropout = nn.Dropout(attention_dropout) def _prob_QK(self, Q, K, sample_k, n_top): # n_top: c*ln(L_q) # Q [B, H, L_q, D], K [B, H, L_k, D] B, H, L_K, E = K.shape _, _, L_Q, _ = Q.shape K_expand = K.unsqueeze(-3).expand(B, H, L_Q, L_K, E) index_sample = torch.randint(L_K, (L_Q, sample_k), device=Q.device) K_sample = K_expand[:, :, torch.arange(L_Q, device=Q.device).unsqueeze(1), index_sample, :] Q_K_sample = torch.matmul(Q.unsqueeze(-2), K_sample.transpose(-2, -1)).squeeze(-2) # (B,H,L_Q,sample_k) M = Q_K_sample.max(-1)[0] - torch.div(Q_K_sample.sum(-1), L_K) # (B,H,L_Q) M_top = M.topk(n_top, sorted=False)[1] # indices Q_reduce = Q[torch.arange(B)[:, None, None], torch.arange(H)[None, :, None], M_top, :] # (B,H,n_top,D) Q_K = torch.matmul(Q_reduce, K.transpose(-2, -1)) # (B,H,n_top,L_K) return Q_K, M_top def _get_initial_context(self, V, L_Q): B, H, L_V, D = V.shape if not self.mask_flag: V_mean = V.mean(dim=-2) # (B,H,D) context = V_mean.unsqueeze(-2).expand(B, H, L_Q, D).clone() else: assert L_Q == L_V context = V.cumsum(dim=-2) return context def _update_context(self, context_in, V, scores, index, L_Q, attn_mask): B, H, L_V, D = V.shape if self.mask_flag: attn_mask = ProbMask(B, H, L_Q, index, scores, device=V.device) scores.masked_fill_(attn_mask.mask, -np.inf) attn = torch.softmax(scores, dim=-1) context_in[torch.arange(B)[:, None, None], torch.arange(H)[None, :, None], index, :] = torch.matmul(attn, V).type_as(context_in) if self.output_attention: attns = (torch.ones([B, H, L_V, L_V], device=attn.device, dtype=attn.dtype) / L_V) attns[torch.arange(B)[:, None, None], torch.arange(H)[None, :, None], index, :] = attn return context_in, attns else: return context_in, None def forward(self, queries, keys, values, attn_mask, tau=None, delta=None, key_padding_mask=None): """ key_padding_mask 目前未集成到 ProbAttention(如需,可在scores处对无效键置 -inf) """ B, L_Q, H, D = queries.shape _, L_K, _, _ = keys.shape queries = queries.transpose(2, 1) # (B,H,L_Q,D) keys = keys.transpose(2, 1) # (B,H,L_K,D) values = values.transpose(2, 1) # (B,H,L_K,D) U_part = self.factor * int(np.ceil(np.log(L_K))) u = self.factor * int(np.ceil(np.log(L_Q))) U_part = min(U_part, L_K) u = min(u, L_Q) scores_top, index = self._prob_QK(queries, keys, sample_k=U_part, n_top=u) scale = self.scale or 1. / sqrt(D) scores_top = scores_top * scale context = self._get_initial_context(values, L_Q) context, attn = self._update_context(context, values, scores_top, index, L_Q, attn_mask) return context.contiguous(), attn class AttentionLayer(nn.Module): """ 修正点: - forward 新增 key_padding_mask 参数,并向 inner_attention 透传 - 保持与旧调用兼容(不传时默认None) """ def __init__(self, attention, d_model, n_heads, d_keys=None, d_values=None): super(AttentionLayer, self).__init__() d_keys = d_keys or (d_model // n_heads) d_values = d_values or (d_model // n_heads) self.inner_attention = attention self.query_projection = nn.Linear(d_model, d_keys * n_heads) self.key_projection = nn.Linear(d_model, d_keys * n_heads) self.value_projection = nn.Linear(d_model, d_values * n_heads) self.out_projection = nn.Linear(d_values * n_heads, d_model) self.n_heads = n_heads def forward(self, queries, keys, values, attn_mask, tau=None, delta=None, key_padding_mask=None): """ key_padding_mask: (B, S) bool, True=有效,False=padding """ B, L, _ = queries.shape _, S, _ = keys.shape H = self.n_heads queries = self.query_projection(queries).view(B, L, H, -1) keys = self.key_projection(keys).view(B, S, H, -1) values = self.value_projection(values).view(B, S, H, -1) out, attn = self.inner_attention( queries, keys, values, attn_mask, tau=tau, delta=delta, key_padding_mask=key_padding_mask, ) out = out.view(B, L, -1) return self.out_projection(out), attn class ReformerLayer(nn.Module): def __init__(self, attention, d_model, n_heads, d_keys=None, d_values=None, causal=False, bucket_size=4, n_hashes=4): super().__init__() self.bucket_size = bucket_size self.attn = LSHSelfAttention( dim=d_model, heads=n_heads, bucket_size=bucket_size, n_hashes=n_hashes, causal=causal ) def fit_length(self, queries): # inside reformer: assert N % (bucket_size * 2) == 0 B, N, C = queries.shape if N % (self.bucket_size * 2) == 0: return queries else: fill_len = (self.bucket_size * 2) - (N % (self.bucket_size * 2)) return torch.cat([queries, torch.zeros([B, fill_len, C]).to(queries.device)], dim=1) def forward(self, queries, keys, values, attn_mask, tau, delta, key_padding_mask=None): # queries=keys in Reformer B, N, C = queries.shape queries = self.attn(self.fit_length(queries))[:, :N, :] return queries, None class TwoStageAttentionLayer(nn.Module): ''' The Two Stage Attention (TSA) Layer input/output shape: [batch_size, Data_dim(D), Seg_num(L), d_model] ''' def __init__(self, configs, seg_num, factor, d_model, n_heads, d_ff=None, dropout=0.1): super(TwoStageAttentionLayer, self).__init__() d_ff = d_ff or 4 * d_model self.time_attention = AttentionLayer(FullAttention(False, configs.factor, attention_dropout=configs.dropout, output_attention=False), d_model, n_heads) self.dim_sender = AttentionLayer(FullAttention(False, configs.factor, attention_dropout=configs.dropout, output_attention=False), d_model, n_heads) self.dim_receiver = AttentionLayer(FullAttention(False, configs.factor, attention_dropout=configs.dropout, output_attention=False), d_model, n_heads) self.router = nn.Parameter(torch.randn(seg_num, factor, d_model)) self.dropout = nn.Dropout(dropout) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.norm3 = nn.LayerNorm(d_model) self.norm4 = nn.LayerNorm(d_model) self.MLP1 = nn.Sequential(nn.Linear(d_model, d_ff), nn.GELU(), nn.Linear(d_ff, d_model)) self.MLP2 = nn.Sequential(nn.Linear(d_model, d_ff), nn.GELU(), nn.Linear(d_ff, d_model)) def forward(self, x, attn_mask=None, tau=None, delta=None, key_padding_mask=None): # Cross Time Stage: Directly apply MSA to each dimension batch = x.shape[0] time_in = rearrange(x, 'b ts_d seg_num d_model -> (b ts_d) seg_num d_model') time_enc, attn = self.time_attention( time_in, time_in, time_in, attn_mask=None, tau=None, delta=None, key_padding_mask=key_padding_mask ) dim_in = time_in + self.dropout(time_enc) dim_in = self.norm1(dim_in) dim_in = dim_in + self.dropout(self.MLP1(dim_in)) dim_in = self.norm2(dim_in) # Cross Dimension Stage dim_send = rearrange(dim_in, '(b ts_d) seg_num d_model -> (b seg_num) ts_d d_model', b=batch) batch_router = repeat(self.router, 'seg_num factor d_model -> (repeat seg_num) factor d_model', repeat=batch) dim_buffer, _ = self.dim_sender(batch_router, dim_send, dim_send, attn_mask=None, tau=None, delta=None) dim_receive, _ = self.dim_receiver(dim_send, dim_buffer, dim_buffer, attn_mask=None, tau=None, delta=None) dim_enc = dim_send + self.dropout(dim_receive) dim_enc = self.norm3(dim_enc) dim_enc = dim_enc + self.dropout(self.MLP2(dim_enc)) dim_enc = self.norm4(dim_enc) final_out = rearrange(dim_enc, '(b seg_num) ts_d d_model -> b ts_d seg_num d_model', b=batch) return final_out