export CUDA_VISIBLE_DEVICES=0 # Model name model_name=WPMixer # Datasets and prediction lengths dataset=traffic seq_lens=(1200 1200 1200 1200) pred_lens=(96 192 336 720) learning_rates=(0.0010385 0.000567053 0.001026715 0.001496217) batches=(16 16 16 16) epochs=(60 60 50 60) dropouts=(0.05 0.05 0.0 0.05) patch_lens=(16 16 16 16) lradjs=(type3 type3 type3 type3) d_models=(16 32 32 32) patiences=(12 12 12 12) # Model params below need to be set in WPMixer.py Line 15, instead of this script wavelets=(db3 db3 bior3.1 db3) levels=(1 1 1 1) tfactors=(3 3 7 7) dfactors=(5 5 7 3) strides=(8 8 8 8) # Loop over datasets and prediction lengths for i in "${!pred_lens[@]}"; do python -u run.py \ --is_training 1 \ --root_path ./data/traffic/ \ --data_path traffic.csv \ --model_id wpmixer \ --model $model_name \ --task_name long_term_forecast \ --data $dataset \ --seq_len ${seq_lens[$i]} \ --pred_len ${pred_lens[$i]} \ --label_len 0 \ --d_model ${d_models[$i]} \ --patch_len ${patch_lens[$i]} \ --batch_size ${batches[$i]} \ --learning_rate ${learning_rates[$i]} \ --lradj ${lradjs[$i]} \ --dropout ${dropouts[$i]} \ --patience ${patiences[$i]} \ --train_epochs ${epochs[$i]} \ --use_amp done