export CUDA_VISIBLE_DEVICES=0 model_name=DC_PatchTST # DC_PatchTST specific parameters d_model_stage0=64 # Stage 0 dimension (D0) depth_enc0=1 # Stage 0 Mamba2 encoder depth depth_enc1=1 # Stage 1 Mamba2 encoder depth target_ratio0=0.25 # Target compression ratio for stage 0 target_ratio1=0.25 # Target compression ratio for stage 1 # EthanolConcentration dataset python -u run.py \ --task_name classification \ --is_training 1 \ --root_path ./dataset/EthanolConcentration/ \ --model_id EthanolConcentration \ --model $model_name \ --data UEA \ --e_layers 3 \ --batch_size 8 \ --d_model 128 \ --d_ff 256 \ --n_heads 8 \ --dropout 0.1 \ --activation gelu \ --des 'DC_PatchTST_Exp' \ --itr 1 \ --learning_rate 0.0002 \ --train_epochs 100 \ --patience 10 \ --d_model_stage0 $d_model_stage0 \ --depth_enc0 $depth_enc0 \ --depth_enc1 $depth_enc1 \ --target_ratio0 $target_ratio0 \ --target_ratio1 $target_ratio1 # FaceDetection dataset python -u run.py \ --task_name classification \ --is_training 1 \ --root_path ./dataset/FaceDetection/ \ --model_id FaceDetection \ --model $model_name \ --data UEA \ --e_layers 3 \ --batch_size 8 \ --d_model 128 \ --d_ff 256 \ --n_heads 8 \ --dropout 0.1 \ --activation gelu \ --des 'DC_PatchTST_Exp' \ --itr 1 \ --learning_rate 0.001 \ --train_epochs 100 \ --patience 10 \ --d_model_stage0 $d_model_stage0 \ --depth_enc0 $depth_enc0 \ --depth_enc1 $depth_enc1 \ --target_ratio0 $target_ratio0 \ --target_ratio1 $target_ratio1 # Handwriting dataset python -u run.py \ --task_name classification \ --is_training 1 \ --root_path ./dataset/Handwriting/ \ --model_id Handwriting \ --model $model_name \ --data UEA \ --e_layers 3 \ --batch_size 8 \ --d_model 128 \ --d_ff 256 \ --n_heads 8 \ --dropout 0.1 \ --activation gelu \ --des 'DC_PatchTST_Exp' \ --itr 1 \ --learning_rate 0.001 \ --train_epochs 100 \ --patience 10 \ --d_model_stage0 $d_model_stage0 \ --depth_enc0 $depth_enc0 \ --depth_enc1 $depth_enc1 \ --target_ratio0 $target_ratio0 \ --target_ratio1 $target_ratio1 # Heartbeat dataset python -u run.py \ --task_name classification \ --is_training 1 \ --root_path ./dataset/Heartbeat/ \ --model_id Heartbeat \ --model $model_name \ --data UEA \ --e_layers 3 \ --batch_size 8 \ --d_model 128 \ --d_ff 256 \ --n_heads 8 \ --dropout 0.1 \ --activation gelu \ --des 'DC_PatchTST_Exp' \ --itr 1 \ --learning_rate 0.001 \ --train_epochs 100 \ --patience 10 \ --d_model_stage0 $d_model_stage0 \ --depth_enc0 $depth_enc0 \ --depth_enc1 $depth_enc1 \ --target_ratio0 $target_ratio0 \ --target_ratio1 $target_ratio1 # JapaneseVowels dataset python -u run.py \ --task_name classification \ --is_training 1 \ --root_path ./dataset/JapaneseVowels/ \ --model_id JapaneseVowels \ --model $model_name \ --data UEA \ --e_layers 3 \ --batch_size 8 \ --d_model 128 \ --d_ff 256 \ --n_heads 8 \ --dropout 0.1 \ --activation gelu \ --des 'DC_PatchTST_Exp' \ --itr 1 \ --learning_rate 0.001 \ --train_epochs 100 \ --patience 10 \ --d_model_stage0 $d_model_stage0 \ --depth_enc0 $depth_enc0 \ --depth_enc1 $depth_enc1 \ --target_ratio0 $target_ratio0 \ --target_ratio1 $target_ratio1