import torch import torch.nn as nn from mamba_ssm import Mamba2 class Mamba2Encoder(nn.Module): """ 使用 Mamba2 对 patch 维度进行序列建模: 输入: [bs, nvars, patch_num, patch_len] 映射: patch_len -> d_model 建模: 在 patch_num 维度上用 Mamba2(可堆叠多层) 输出: [bs, nvars, d_model] (仅返回 Mamba 输出的最后一个时间步) """ def __init__( self, c_in, patch_num, patch_len, d_model=128, # Mamba2 超参 d_state=64, d_conv=4, expand=2, headdim=64, # 堆叠层数 n_layers=1, ): super().__init__() self.patch_num = patch_num self.patch_len = patch_len self.d_model = d_model self.n_layers = n_layers # 将 patch_len 投影到 d_model self.W_P = nn.Linear(patch_len, d_model) # 映射 patch_len -> d_model # 堆叠 n_layers 层 Mamba2 self.mambas = nn.ModuleList([ Mamba2( d_model=d_model, d_state=d_state, d_conv=d_conv, expand=expand, headdim=headdim, ) for _ in range(n_layers) ]) def forward(self, x): # x: [bs, nvars, patch_num, patch_len] bs, n_vars, patch_num, patch_len = x.shape # bs, n_vars, patch_num, patch_len # 1) 线性映射: patch_len -> d_model x = self.W_P(x) # x: [bs, nvars, patch_num, d_model] # 2) 合并 batch 与通道维度,作为 Mamba 的 batch u = x.reshape(bs * n_vars, patch_num, self.d_model) # u: [bs*nvars, patch_num, d_model] # 3) 通过 n_layers 层 Mamba2 进行建模(在 patch_num 维度上) for m in self.mambas: u = m(u) # 形状保持 [bs*nvars, patch_num, d_model] # 4) 仅取最后一个时间步 y_last = u[:, -1, :] # y_last: [bs*nvars, d_model] # 5) 还原回 (bs, nvars, d_model) y_last = y_last.view(bs, n_vars, self.d_model) # y_last: [bs, nvars, d_model] return y_last # [bs, nvars, d_model]