export CUDA_VISIBLE_DEVICES=0 model_name=TimeMixer e_layers=4 down_sampling_layers=1 down_sampling_window=2 learning_rate=0.01 d_model=32 d_ff=32 batch_size=16 python -u run.py \ --task_name short_term_forecast \ --is_training 1 \ --root_path ./dataset/m4 \ --seasonal_patterns 'Monthly' \ --model_id m4_Monthly \ --model $model_name \ --data m4 \ --features M \ --e_layers $e_layers \ --d_layers 1 \ --factor 3 \ --enc_in 1 \ --dec_in 1 \ --c_out 1 \ --batch_size 128 \ --d_model $d_model \ --d_ff 32 \ --des 'Exp' \ --itr 1 \ --learning_rate $learning_rate \ --train_epochs 50 \ --patience 20 \ --down_sampling_layers $down_sampling_layers \ --down_sampling_method avg \ --down_sampling_window $down_sampling_window \ --loss 'SMAPE' python -u run.py \ --task_name short_term_forecast \ --is_training 1 \ --root_path ./dataset/m4 \ --seasonal_patterns 'Yearly' \ --model_id m4_Yearly \ --model $model_name \ --data m4 \ --features M \ --e_layers $e_layers \ --d_layers 1 \ --factor 3 \ --enc_in 1 \ --dec_in 1 \ --c_out 1 \ --batch_size 128 \ --d_model $d_model \ --d_ff 32 \ --des 'Exp' \ --itr 1 \ --learning_rate $learning_rate \ --train_epochs 50 \ --patience 20 \ --down_sampling_layers $down_sampling_layers \ --down_sampling_method avg \ --down_sampling_window $down_sampling_window \ --loss 'SMAPE' python -u run.py \ --task_name short_term_forecast \ --is_training 1 \ --root_path ./dataset/m4 \ --seasonal_patterns 'Quarterly' \ --model_id m4_Quarterly \ --model $model_name \ --data m4 \ --features M \ --e_layers $e_layers \ --d_layers 1 \ --factor 3 \ --enc_in 1 \ --dec_in 1 \ --c_out 1 \ --batch_size 128 \ --d_model $d_model \ --d_ff 64 \ --des 'Exp' \ --itr 1 \ --learning_rate $learning_rate \ --train_epochs 50 \ --patience 20 \ --down_sampling_layers $down_sampling_layers \ --down_sampling_method avg \ --down_sampling_window $down_sampling_window \ --loss 'SMAPE' python -u run.py \ --task_name short_term_forecast \ --is_training 1 \ --root_path ./dataset/m4 \ --seasonal_patterns 'Daily' \ --model_id m4_Daily \ --model $model_name \ --data m4 \ --features M \ --e_layers $e_layers \ --d_layers 1 \ --factor 3 \ --enc_in 1 \ --dec_in 1 \ --c_out 1 \ --batch_size 128 \ --d_model $d_model \ --d_ff 16 \ --des 'Exp' \ --itr 1 \ --learning_rate $learning_rate \ --train_epochs 50 \ --patience 20 \ --down_sampling_layers $down_sampling_layers \ --down_sampling_method avg \ --down_sampling_window $down_sampling_window \ --loss 'SMAPE' python -u run.py \ --task_name short_term_forecast \ --is_training 1 \ --root_path ./dataset/m4 \ --seasonal_patterns 'Weekly' \ --model_id m4_Weekly \ --model $model_name \ --data m4 \ --features M \ --e_layers $e_layers \ --d_layers 1 \ --factor 3 \ --enc_in 1 \ --dec_in 1 \ --c_out 1 \ --batch_size 128 \ --d_model $d_model \ --d_ff 32 \ --des 'Exp' \ --itr 1 \ --learning_rate $learning_rate \ --train_epochs 50 \ --patience 20 \ --down_sampling_layers $down_sampling_layers \ --down_sampling_method avg \ --down_sampling_window $down_sampling_window \ --loss 'SMAPE' python -u run.py \ --task_name short_term_forecast \ --is_training 1 \ --root_path ./dataset/m4 \ --seasonal_patterns 'Hourly' \ --model_id m4_Hourly \ --model $model_name \ --data m4 \ --features M \ --e_layers $e_layers \ --d_layers 1 \ --factor 3 \ --enc_in 1 \ --dec_in 1 \ --c_out 1 \ --batch_size 128 \ --d_model $d_model \ --d_ff 32 \ --des 'Exp' \ --itr 1 \ --learning_rate $learning_rate \ --train_epochs 50 \ --patience 20 \ --down_sampling_layers $down_sampling_layers \ --down_sampling_method avg \ --down_sampling_window $down_sampling_window \ --loss 'SMAPE'