export CUDA_VISIBLE_DEVICES=0 # Model name model_name=WPMixer # Datasets and prediction lengths dataset=electricity seq_lens=(512 512 512 512) pred_lens=(96 192 336 720) learning_rates=(0.00328086 0.000493286 0.002505375 0.001977516) batches=(32 32 32 32) epochs=(100 100 100 100) dropouts=(0.1 0.1 0.2 0.1) patch_lens=(16 16 16 16) lradjs=(type3 type3 type3 type3) d_models=(32 32 32 32) patiences=(12 12 12 12) # Model params below need to be set in WPMixer.py Line 15, instead of this script wavelets=(sym3 coif5 sym4 db2) levels=(2 3 1 2) tfactors=(3 7 5 7) dfactors=(5 5 7 8) strides=(8 8 8 8) # Loop over datasets and prediction lengths for i in "${!pred_lens[@]}"; do python -u run.py \ --is_training 1 \ --root_path ./data/electricity/ \ --data_path electricity.csv \ --model_id wpmixer \ --model $model_name \ --task_name long_term_forecast \ --data $dataset \ --seq_len ${seq_lens[$i]} \ --pred_len ${pred_lens[$i]} \ --label_len 0 \ --d_model ${d_models[$i]} \ --patch_len ${patch_lens[$i]} \ --batch_size ${batches[$i]} \ --learning_rate ${learning_rates[$i]} \ --lradj ${lradjs[$i]} \ --dropout ${dropouts[$i]} \ --patience ${patiences[$i]} \ --train_epochs ${epochs[$i]} \ --use_amp done