#!/bin/bash # xPatch_SparseChannel Classification Training Script for Multiple Datasets export CUDA_VISIBLE_DEVICES=0 model_name=xPatch_SparseChannel # Create results directory if it doesn't exist mkdir -p ./results # UWaveGestureLibrary dataset (seq_len=315, enc_in=3, k_graph=3) python -u run.py \ --task_name classification \ --is_training 1 \ --root_path ./dataset/UWaveGestureLibrary/ \ --model_id UWaveGestureLibrary \ --model $model_name \ --data UEA \ --e_layers 2 \ --batch_size 64 \ --seq_len 315 \ --enc_in 3 \ --d_model 128 \ --d_ff 256 \ --n_heads 16 \ --patch_len 16 \ --stride 8 \ --dropout 0.1 \ --des 'xPatch_SparseChannel_UWaveGestureLibrary' \ --itr 1 \ --learning_rate 0.001 \ --train_epochs 100 \ --patience 30 \ --revin 0 \ --k_graph 3 | tee ./results/xPatch_SparseChannel_UWaveGestureLibrary.log # EthanolConcentration dataset (seq_len=1751, enc_in=3, k_graph=3) python -u run.py \ --task_name classification \ --is_training 1 \ --root_path ./dataset/EthanolConcentration/ \ --model_id EthanolConcentration \ --model $model_name \ --data UEA \ --e_layers 2 \ --batch_size 64 \ --seq_len 1751 \ --enc_in 3 \ --d_model 128 \ --d_ff 256 \ --n_heads 16 \ --patch_len 16 \ --stride 8 \ --dropout 0.1 \ --des 'xPatch_SparseChannel_EthanolConcentration' \ --itr 1 \ --learning_rate 0.0005 \ --train_epochs 100 \ --patience 30 \ --revin 0 \ --k_graph 3 | tee ./results/xPatch_SparseChannel_EthanolConcentration.log # Handwriting dataset (seq_len=152, enc_in=3, k_graph=3) python -u run.py \ --task_name classification \ --is_training 1 \ --root_path ./dataset/Handwriting/ \ --model_id Handwriting \ --model $model_name \ --data UEA \ --e_layers 2 \ --batch_size 64 \ --seq_len 152 \ --enc_in 3 \ --d_model 128 \ --d_ff 256 \ --n_heads 16 \ --patch_len 16 \ --stride 8 \ --dropout 0.1 \ --des 'xPatch_SparseChannel_Handwriting' \ --itr 1 \ --learning_rate 0.001 \ --train_epochs 100 \ --patience 30 \ --revin 0 \ --k_graph 3 | tee ./results/xPatch_SparseChannel_Handwriting.log # JapaneseVowels dataset (seq_len=29, enc_in=12, k_graph=8) python -u run.py \ --task_name classification \ --is_training 1 \ --root_path ./dataset/JapaneseVowels/ \ --model_id JapaneseVowels \ --model $model_name \ --data UEA \ --e_layers 2 \ --batch_size 64 \ --seq_len 29 \ --enc_in 12 \ --d_model 128 \ --d_ff 256 \ --n_heads 16 \ --patch_len 16 \ --stride 8 \ --dropout 0.1 \ --des 'xPatch_SparseChannel_JapaneseVowels' \ --itr 1 \ --learning_rate 0.0005 \ --train_epochs 100 \ --patience 30 \ --revin 0 \ --k_graph 8 | tee ./results/xPatch_SparseChannel_JapaneseVowels.log # PEMS-SF dataset (seq_len=144, enc_in=963, k_graph=8) python -u run.py \ --task_name classification \ --is_training 1 \ --root_path ./dataset/PEMS-SF/ \ --model_id PEMS-SF \ --model $model_name \ --data UEA \ --e_layers 2 \ --batch_size 16 \ --seq_len 144 \ --enc_in 963 \ --d_model 128 \ --d_ff 256 \ --n_heads 16 \ --patch_len 16 \ --stride 8 \ --dropout 0.1 \ --des 'xPatch_SparseChannel_PEMS-SF' \ --itr 1 \ --learning_rate 0.0005 \ --train_epochs 100 \ --patience 30 \ --revin 0 \ --k_graph 8 | tee ./results/xPatch_SparseChannel_PEMS-SF.log