feat: add mamba and dynamic chunking related code and test code

This commit is contained in:
gameloader
2025-09-04 01:32:13 +00:00
parent 12cb7652cf
commit ef307a57e9
21 changed files with 4550 additions and 86 deletions

View File

@ -0,0 +1,142 @@
export CUDA_VISIBLE_DEVICES=0
model_name=DC_PatchTST
# DC_PatchTST specific parameters
d_model_stage0=64 # Stage 0 dimension (D0)
depth_enc0=1 # Stage 0 Mamba2 encoder depth
depth_enc1=1 # Stage 1 Mamba2 encoder depth
target_ratio0=0.25 # Target compression ratio for stage 0
target_ratio1=0.25 # Target compression ratio for stage 1
# EthanolConcentration dataset
python -u run.py \
--task_name classification \
--is_training 1 \
--root_path ./dataset/EthanolConcentration/ \
--model_id EthanolConcentration \
--model $model_name \
--data UEA \
--e_layers 3 \
--batch_size 8 \
--d_model 128 \
--d_ff 256 \
--n_heads 8 \
--dropout 0.1 \
--activation gelu \
--des 'DC_PatchTST_Exp' \
--itr 1 \
--learning_rate 0.0002 \
--train_epochs 100 \
--patience 10 \
--d_model_stage0 $d_model_stage0 \
--depth_enc0 $depth_enc0 \
--depth_enc1 $depth_enc1 \
--target_ratio0 $target_ratio0 \
--target_ratio1 $target_ratio1
# FaceDetection dataset
python -u run.py \
--task_name classification \
--is_training 1 \
--root_path ./dataset/FaceDetection/ \
--model_id FaceDetection \
--model $model_name \
--data UEA \
--e_layers 3 \
--batch_size 8 \
--d_model 128 \
--d_ff 256 \
--n_heads 8 \
--dropout 0.1 \
--activation gelu \
--des 'DC_PatchTST_Exp' \
--itr 1 \
--learning_rate 0.001 \
--train_epochs 100 \
--patience 10 \
--d_model_stage0 $d_model_stage0 \
--depth_enc0 $depth_enc0 \
--depth_enc1 $depth_enc1 \
--target_ratio0 $target_ratio0 \
--target_ratio1 $target_ratio1
# Handwriting dataset
python -u run.py \
--task_name classification \
--is_training 1 \
--root_path ./dataset/Handwriting/ \
--model_id Handwriting \
--model $model_name \
--data UEA \
--e_layers 3 \
--batch_size 8 \
--d_model 128 \
--d_ff 256 \
--n_heads 8 \
--dropout 0.1 \
--activation gelu \
--des 'DC_PatchTST_Exp' \
--itr 1 \
--learning_rate 0.001 \
--train_epochs 100 \
--patience 10 \
--d_model_stage0 $d_model_stage0 \
--depth_enc0 $depth_enc0 \
--depth_enc1 $depth_enc1 \
--target_ratio0 $target_ratio0 \
--target_ratio1 $target_ratio1
# Heartbeat dataset
python -u run.py \
--task_name classification \
--is_training 1 \
--root_path ./dataset/Heartbeat/ \
--model_id Heartbeat \
--model $model_name \
--data UEA \
--e_layers 3 \
--batch_size 8 \
--d_model 128 \
--d_ff 256 \
--n_heads 8 \
--dropout 0.1 \
--activation gelu \
--des 'DC_PatchTST_Exp' \
--itr 1 \
--learning_rate 0.001 \
--train_epochs 100 \
--patience 10 \
--d_model_stage0 $d_model_stage0 \
--depth_enc0 $depth_enc0 \
--depth_enc1 $depth_enc1 \
--target_ratio0 $target_ratio0 \
--target_ratio1 $target_ratio1
# JapaneseVowels dataset
python -u run.py \
--task_name classification \
--is_training 1 \
--root_path ./dataset/JapaneseVowels/ \
--model_id JapaneseVowels \
--model $model_name \
--data UEA \
--e_layers 3 \
--batch_size 8 \
--d_model 128 \
--d_ff 256 \
--n_heads 8 \
--dropout 0.1 \
--activation gelu \
--des 'DC_PatchTST_Exp' \
--itr 1 \
--learning_rate 0.001 \
--train_epochs 100 \
--patience 10 \
--d_model_stage0 $d_model_stage0 \
--depth_enc0 $depth_enc0 \
--depth_enc1 $depth_enc1 \
--target_ratio0 $target_ratio0 \
--target_ratio1 $target_ratio1