first commit
This commit is contained in:
135
scripts/short_term_forecast/Autoformer_M4.sh
Normal file
135
scripts/short_term_forecast/Autoformer_M4.sh
Normal file
@ -0,0 +1,135 @@
|
||||
export CUDA_VISIBLE_DEVICES=1
|
||||
|
||||
model_name=Autoformer
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Monthly' \
|
||||
--model_id m4_Monthly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Yearly' \
|
||||
--model_id m4_Yearly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Quarterly' \
|
||||
--model_id m4_Quarterly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Weekly' \
|
||||
--model_id m4_Weekly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Daily' \
|
||||
--model_id m4_Daily \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Hourly' \
|
||||
--model_id m4_Hourly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
147
scripts/short_term_forecast/Crossformer_M4.sh
Normal file
147
scripts/short_term_forecast/Crossformer_M4.sh
Normal file
@ -0,0 +1,147 @@
|
||||
export CUDA_VISIBLE_DEVICES=5
|
||||
|
||||
model_name=Crossformer
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Monthly' \
|
||||
--model_id m4_Monthly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 32 \
|
||||
--d_ff 32 \
|
||||
--top_k 5 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Yearly' \
|
||||
--model_id m4_Yearly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 16 \
|
||||
--d_ff 32 \
|
||||
--top_k 5 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Quarterly' \
|
||||
--model_id m4_Quarterly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 64 \
|
||||
--d_ff 64 \
|
||||
--top_k 5 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Daily' \
|
||||
--model_id m4_Daily \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 16 \
|
||||
--d_ff 16 \
|
||||
--top_k 5 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Weekly' \
|
||||
--model_id m4_Weekly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 32 \
|
||||
--d_ff 32 \
|
||||
--top_k 5 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Hourly' \
|
||||
--model_id m4_Hourly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 32 \
|
||||
--d_ff 32 \
|
||||
--top_k 5 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
135
scripts/short_term_forecast/DLinear_M4.sh
Normal file
135
scripts/short_term_forecast/DLinear_M4.sh
Normal file
@ -0,0 +1,135 @@
|
||||
export CUDA_VISIBLE_DEVICES=1
|
||||
|
||||
model_name=DLinear
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Monthly' \
|
||||
--model_id m4_Monthly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Yearly' \
|
||||
--model_id m4_Yearly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Quarterly' \
|
||||
--model_id m4_Quarterly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Weekly' \
|
||||
--model_id m4_Weekly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Daily' \
|
||||
--model_id m4_Daily \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Hourly' \
|
||||
--model_id m4_Hourly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
135
scripts/short_term_forecast/ETSformer_M4.sh
Normal file
135
scripts/short_term_forecast/ETSformer_M4.sh
Normal file
@ -0,0 +1,135 @@
|
||||
export CUDA_VISIBLE_DEVICES=1
|
||||
|
||||
model_name=ETSformer
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ../dataset/m4 \
|
||||
--seasonal_patterns 'Monthly' \
|
||||
--model_id m4_Monthly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 2 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Yearly' \
|
||||
--model_id m4_Yearly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 2 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Quarterly' \
|
||||
--model_id m4_Quarterly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 2 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Weekly' \
|
||||
--model_id m4_Weekly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 2 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Daily' \
|
||||
--model_id m4_Daily \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 2 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Hourly' \
|
||||
--model_id m4_Hourly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 2 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
135
scripts/short_term_forecast/FEDformer_M4.sh
Normal file
135
scripts/short_term_forecast/FEDformer_M4.sh
Normal file
@ -0,0 +1,135 @@
|
||||
export CUDA_VISIBLE_DEVICES=1
|
||||
|
||||
model_name=FEDformer
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Monthly' \
|
||||
--model_id m4_Monthly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Yearly' \
|
||||
--model_id m4_Yearly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Quarterly' \
|
||||
--model_id m4_Quarterly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Weekly' \
|
||||
--model_id m4_Weekly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Daily' \
|
||||
--model_id m4_Daily \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Hourly' \
|
||||
--model_id m4_Hourly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
147
scripts/short_term_forecast/FiLM_M4.sh
Normal file
147
scripts/short_term_forecast/FiLM_M4.sh
Normal file
@ -0,0 +1,147 @@
|
||||
export CUDA_VISIBLE_DEVICES=3
|
||||
|
||||
model_name=FiLM
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Monthly' \
|
||||
--model_id m4_Monthly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 32 \
|
||||
--d_ff 32 \
|
||||
--top_k 5 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Yearly' \
|
||||
--model_id m4_Yearly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 16 \
|
||||
--d_ff 32 \
|
||||
--top_k 5 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Quarterly' \
|
||||
--model_id m4_Quarterly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 64 \
|
||||
--d_ff 64 \
|
||||
--top_k 5 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Daily' \
|
||||
--model_id m4_Daily \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 16 \
|
||||
--d_ff 16 \
|
||||
--top_k 5 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Weekly' \
|
||||
--model_id m4_Weekly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 32 \
|
||||
--d_ff 32 \
|
||||
--top_k 5 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Hourly' \
|
||||
--model_id m4_Hourly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 32 \
|
||||
--d_ff 32 \
|
||||
--top_k 5 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
135
scripts/short_term_forecast/Informer_M4.sh
Normal file
135
scripts/short_term_forecast/Informer_M4.sh
Normal file
@ -0,0 +1,135 @@
|
||||
export CUDA_VISIBLE_DEVICES=1
|
||||
|
||||
model_name=Informer
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Monthly' \
|
||||
--model_id m4_Monthly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Yearly' \
|
||||
--model_id m4_Yearly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Quarterly' \
|
||||
--model_id m4_Quarterly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Weekly' \
|
||||
--model_id m4_Weekly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Daily' \
|
||||
--model_id m4_Daily \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Hourly' \
|
||||
--model_id m4_Hourly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
135
scripts/short_term_forecast/LightTS_M4.sh
Normal file
135
scripts/short_term_forecast/LightTS_M4.sh
Normal file
@ -0,0 +1,135 @@
|
||||
export CUDA_VISIBLE_DEVICES=1
|
||||
|
||||
model_name=LightTS
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Monthly' \
|
||||
--model_id m4_Monthly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Yearly' \
|
||||
--model_id m4_Yearly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Quarterly' \
|
||||
--model_id m4_Quarterly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Weekly' \
|
||||
--model_id m4_Weekly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Daily' \
|
||||
--model_id m4_Daily \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Hourly' \
|
||||
--model_id m4_Hourly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
147
scripts/short_term_forecast/MICN_M4.sh
Normal file
147
scripts/short_term_forecast/MICN_M4.sh
Normal file
@ -0,0 +1,147 @@
|
||||
export CUDA_VISIBLE_DEVICES=4
|
||||
|
||||
model_name=MICN
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Monthly' \
|
||||
--model_id m4_Monthly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 32 \
|
||||
--d_ff 32 \
|
||||
--top_k 5 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Yearly' \
|
||||
--model_id m4_Yearly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 16 \
|
||||
--d_ff 32 \
|
||||
--top_k 5 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Quarterly' \
|
||||
--model_id m4_Quarterly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 64 \
|
||||
--d_ff 64 \
|
||||
--top_k 5 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Daily' \
|
||||
--model_id m4_Daily \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 16 \
|
||||
--d_ff 16 \
|
||||
--top_k 5 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Weekly' \
|
||||
--model_id m4_Weekly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 32 \
|
||||
--d_ff 32 \
|
||||
--top_k 5 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Hourly' \
|
||||
--model_id m4_Hourly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 32 \
|
||||
--d_ff 32 \
|
||||
--top_k 5 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
135
scripts/short_term_forecast/Mamba_M4.sh
Normal file
135
scripts/short_term_forecast/Mamba_M4.sh
Normal file
@ -0,0 +1,135 @@
|
||||
# export CUDA_VISIBLE_DEVICES=1
|
||||
|
||||
model_name=Mamba
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Monthly' \
|
||||
--model_id m4_Monthly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--enc_in 1 \
|
||||
--expand 2 \
|
||||
--d_ff 16 \
|
||||
--d_conv 4 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 128 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Yearly' \
|
||||
--model_id m4_Yearly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--enc_in 1 \
|
||||
--expand 2 \
|
||||
--d_ff 16 \
|
||||
--d_conv 4 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 128 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Quarterly' \
|
||||
--model_id m4_Quarterly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--enc_in 1 \
|
||||
--expand 2 \
|
||||
--d_ff 16 \
|
||||
--d_conv 4 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 128 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Weekly' \
|
||||
--model_id m4_Weekly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--enc_in 1 \
|
||||
--expand 2 \
|
||||
--d_ff 16 \
|
||||
--d_conv 4 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 128 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Daily' \
|
||||
--model_id m4_Daily \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--enc_in 1 \
|
||||
--expand 2 \
|
||||
--d_ff 16 \
|
||||
--d_conv 4 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 128 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Hourly' \
|
||||
--model_id m4_Hourly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--enc_in 1 \
|
||||
--expand 2 \
|
||||
--d_ff 16 \
|
||||
--d_conv 4 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 128 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
147
scripts/short_term_forecast/Nonstationary_Transformer_M4.sh
Normal file
147
scripts/short_term_forecast/Nonstationary_Transformer_M4.sh
Normal file
@ -0,0 +1,147 @@
|
||||
export CUDA_VISIBLE_DEVICES=1
|
||||
|
||||
model_name=Nonstationary_Transformer
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Monthly' \
|
||||
--model_id m4_Monthly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE' \
|
||||
--p_hidden_dims 256 256 \
|
||||
--p_hidden_layers 2
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Yearly' \
|
||||
--model_id m4_Yearly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE' \
|
||||
--p_hidden_dims 256 256 \
|
||||
--p_hidden_layers 2
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Quarterly' \
|
||||
--model_id m4_Quarterly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE' \
|
||||
--p_hidden_dims 256 256 \
|
||||
--p_hidden_layers 2
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Weekly' \
|
||||
--model_id m4_Weekly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE' \
|
||||
--p_hidden_dims 256 256 \
|
||||
--p_hidden_layers 2
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Daily' \
|
||||
--model_id m4_Daily \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE' \
|
||||
--p_hidden_dims 256 256 \
|
||||
--p_hidden_layers 2
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Hourly' \
|
||||
--model_id m4_Hourly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE' \
|
||||
--p_hidden_dims 256 256 \
|
||||
--p_hidden_layers 2
|
135
scripts/short_term_forecast/Pyraformer_M4.sh
Normal file
135
scripts/short_term_forecast/Pyraformer_M4.sh
Normal file
@ -0,0 +1,135 @@
|
||||
export CUDA_VISIBLE_DEVICES=1
|
||||
|
||||
model_name=Pyraformer
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Monthly' \
|
||||
--model_id m4_Monthly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Yearly' \
|
||||
--model_id m4_Yearly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Quarterly' \
|
||||
--model_id m4_Quarterly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Weekly' \
|
||||
--model_id m4_Weekly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Daily' \
|
||||
--model_id m4_Daily \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Hourly' \
|
||||
--model_id m4_Hourly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
135
scripts/short_term_forecast/Reformer_M4.sh
Normal file
135
scripts/short_term_forecast/Reformer_M4.sh
Normal file
@ -0,0 +1,135 @@
|
||||
export CUDA_VISIBLE_DEVICES=1
|
||||
|
||||
model_name=Reformer
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Monthly' \
|
||||
--model_id m4_Monthly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Yearly' \
|
||||
--model_id m4_Yearly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Quarterly' \
|
||||
--model_id m4_Quarterly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Weekly' \
|
||||
--model_id m4_Weekly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Daily' \
|
||||
--model_id m4_Daily \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Hourly' \
|
||||
--model_id m4_Hourly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
135
scripts/short_term_forecast/TSMixer_M4.sh
Executable file
135
scripts/short_term_forecast/TSMixer_M4.sh
Executable file
@ -0,0 +1,135 @@
|
||||
#export CUDA_VISIBLE_DEVICES=1
|
||||
|
||||
model_name=MTSMixer
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Monthly' \
|
||||
--model_id m4_Monthly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 16 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Yearly' \
|
||||
--model_id m4_Yearly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 16 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Quarterly' \
|
||||
--model_id m4_Quarterly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 16 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Weekly' \
|
||||
--model_id m4_Weekly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 16 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Daily' \
|
||||
--model_id m4_Daily \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 16 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Hourly' \
|
||||
--model_id m4_Hourly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 16 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
180
scripts/short_term_forecast/TimeMixer_M4.sh
Executable file
180
scripts/short_term_forecast/TimeMixer_M4.sh
Executable file
@ -0,0 +1,180 @@
|
||||
export CUDA_VISIBLE_DEVICES=0
|
||||
|
||||
model_name=TimeMixer
|
||||
|
||||
e_layers=4
|
||||
down_sampling_layers=1
|
||||
down_sampling_window=2
|
||||
learning_rate=0.01
|
||||
d_model=32
|
||||
d_ff=32
|
||||
batch_size=16
|
||||
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Monthly' \
|
||||
--model_id m4_Monthly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers $e_layers \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 128 \
|
||||
--d_model $d_model \
|
||||
--d_ff 32 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate $learning_rate \
|
||||
--train_epochs 50 \
|
||||
--patience 20 \
|
||||
--down_sampling_layers $down_sampling_layers \
|
||||
--down_sampling_method avg \
|
||||
--down_sampling_window $down_sampling_window \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Yearly' \
|
||||
--model_id m4_Yearly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers $e_layers \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 128 \
|
||||
--d_model $d_model \
|
||||
--d_ff 32 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate $learning_rate \
|
||||
--train_epochs 50 \
|
||||
--patience 20 \
|
||||
--down_sampling_layers $down_sampling_layers \
|
||||
--down_sampling_method avg \
|
||||
--down_sampling_window $down_sampling_window \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Quarterly' \
|
||||
--model_id m4_Quarterly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers $e_layers \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 128 \
|
||||
--d_model $d_model \
|
||||
--d_ff 64 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate $learning_rate \
|
||||
--train_epochs 50 \
|
||||
--patience 20 \
|
||||
--down_sampling_layers $down_sampling_layers \
|
||||
--down_sampling_method avg \
|
||||
--down_sampling_window $down_sampling_window \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Daily' \
|
||||
--model_id m4_Daily \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers $e_layers \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 128 \
|
||||
--d_model $d_model \
|
||||
--d_ff 16 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate $learning_rate \
|
||||
--train_epochs 50 \
|
||||
--patience 20 \
|
||||
--down_sampling_layers $down_sampling_layers \
|
||||
--down_sampling_method avg \
|
||||
--down_sampling_window $down_sampling_window \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Weekly' \
|
||||
--model_id m4_Weekly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers $e_layers \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 128 \
|
||||
--d_model $d_model \
|
||||
--d_ff 32 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate $learning_rate \
|
||||
--train_epochs 50 \
|
||||
--patience 20 \
|
||||
--down_sampling_layers $down_sampling_layers \
|
||||
--down_sampling_method avg \
|
||||
--down_sampling_window $down_sampling_window \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Hourly' \
|
||||
--model_id m4_Hourly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers $e_layers \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 128 \
|
||||
--d_model $d_model \
|
||||
--d_ff 32 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate $learning_rate \
|
||||
--train_epochs 50 \
|
||||
--patience 20 \
|
||||
--down_sampling_layers $down_sampling_layers \
|
||||
--down_sampling_method avg \
|
||||
--down_sampling_window $down_sampling_window \
|
||||
--loss 'SMAPE'
|
147
scripts/short_term_forecast/TimesNet_M4.sh
Normal file
147
scripts/short_term_forecast/TimesNet_M4.sh
Normal file
@ -0,0 +1,147 @@
|
||||
export CUDA_VISIBLE_DEVICES=0
|
||||
|
||||
model_name=TimesNet
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Monthly' \
|
||||
--model_id m4_Monthly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 32 \
|
||||
--d_ff 32 \
|
||||
--top_k 5 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Yearly' \
|
||||
--model_id m4_Yearly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 16 \
|
||||
--d_ff 32 \
|
||||
--top_k 5 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Quarterly' \
|
||||
--model_id m4_Quarterly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 64 \
|
||||
--d_ff 64 \
|
||||
--top_k 5 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Daily' \
|
||||
--model_id m4_Daily \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 16 \
|
||||
--d_ff 16 \
|
||||
--top_k 5 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Weekly' \
|
||||
--model_id m4_Weekly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 32 \
|
||||
--d_ff 32 \
|
||||
--top_k 5 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Hourly' \
|
||||
--model_id m4_Hourly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 32 \
|
||||
--d_ff 32 \
|
||||
--top_k 5 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
135
scripts/short_term_forecast/Transformer_M4.sh
Normal file
135
scripts/short_term_forecast/Transformer_M4.sh
Normal file
@ -0,0 +1,135 @@
|
||||
export CUDA_VISIBLE_DEVICES=1
|
||||
|
||||
model_name=Transformer
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Monthly' \
|
||||
--model_id m4_Monthly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Yearly' \
|
||||
--model_id m4_Yearly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Quarterly' \
|
||||
--model_id m4_Quarterly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Weekly' \
|
||||
--model_id m4_Weekly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Daily' \
|
||||
--model_id m4_Daily \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Hourly' \
|
||||
--model_id m4_Hourly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
135
scripts/short_term_forecast/iTransformer_M4.sh
Normal file
135
scripts/short_term_forecast/iTransformer_M4.sh
Normal file
@ -0,0 +1,135 @@
|
||||
export CUDA_VISIBLE_DEVICES=0
|
||||
|
||||
model_name=iTransformer
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Monthly' \
|
||||
--model_id m4_Monthly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Yearly' \
|
||||
--model_id m4_Yearly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Quarterly' \
|
||||
--model_id m4_Quarterly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Weekly' \
|
||||
--model_id m4_Weekly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Daily' \
|
||||
--model_id m4_Daily \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
||||
|
||||
python -u run.py \
|
||||
--task_name short_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/m4 \
|
||||
--seasonal_patterns 'Hourly' \
|
||||
--model_id m4_Hourly \
|
||||
--model $model_name \
|
||||
--data m4 \
|
||||
--features M \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 1 \
|
||||
--dec_in 1 \
|
||||
--c_out 1 \
|
||||
--batch_size 16 \
|
||||
--d_model 512 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--loss 'SMAPE'
|
Reference in New Issue
Block a user