first commit

This commit is contained in:
gameloader
2025-08-28 10:17:59 +00:00
commit d6dd462886
350 changed files with 39789 additions and 0 deletions

View File

@ -0,0 +1,135 @@
export CUDA_VISIBLE_DEVICES=1
model_name=Autoformer
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Monthly' \
--model_id m4_Monthly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Yearly' \
--model_id m4_Yearly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Quarterly' \
--model_id m4_Quarterly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Weekly' \
--model_id m4_Weekly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Daily' \
--model_id m4_Daily \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Hourly' \
--model_id m4_Hourly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'

View File

@ -0,0 +1,147 @@
export CUDA_VISIBLE_DEVICES=5
model_name=Crossformer
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Monthly' \
--model_id m4_Monthly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 32 \
--d_ff 32 \
--top_k 5 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Yearly' \
--model_id m4_Yearly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 16 \
--d_ff 32 \
--top_k 5 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Quarterly' \
--model_id m4_Quarterly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 64 \
--d_ff 64 \
--top_k 5 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Daily' \
--model_id m4_Daily \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 16 \
--d_ff 16 \
--top_k 5 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Weekly' \
--model_id m4_Weekly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 32 \
--d_ff 32 \
--top_k 5 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Hourly' \
--model_id m4_Hourly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 32 \
--d_ff 32 \
--top_k 5 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'

View File

@ -0,0 +1,135 @@
export CUDA_VISIBLE_DEVICES=1
model_name=DLinear
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Monthly' \
--model_id m4_Monthly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Yearly' \
--model_id m4_Yearly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Quarterly' \
--model_id m4_Quarterly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Weekly' \
--model_id m4_Weekly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Daily' \
--model_id m4_Daily \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Hourly' \
--model_id m4_Hourly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'

View File

@ -0,0 +1,135 @@
export CUDA_VISIBLE_DEVICES=1
model_name=ETSformer
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ../dataset/m4 \
--seasonal_patterns 'Monthly' \
--model_id m4_Monthly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 2 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Yearly' \
--model_id m4_Yearly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 2 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Quarterly' \
--model_id m4_Quarterly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 2 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Weekly' \
--model_id m4_Weekly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 2 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Daily' \
--model_id m4_Daily \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 2 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Hourly' \
--model_id m4_Hourly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 2 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'

View File

@ -0,0 +1,135 @@
export CUDA_VISIBLE_DEVICES=1
model_name=FEDformer
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Monthly' \
--model_id m4_Monthly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Yearly' \
--model_id m4_Yearly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Quarterly' \
--model_id m4_Quarterly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Weekly' \
--model_id m4_Weekly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Daily' \
--model_id m4_Daily \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Hourly' \
--model_id m4_Hourly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'

View File

@ -0,0 +1,147 @@
export CUDA_VISIBLE_DEVICES=3
model_name=FiLM
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Monthly' \
--model_id m4_Monthly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 32 \
--d_ff 32 \
--top_k 5 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Yearly' \
--model_id m4_Yearly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 16 \
--d_ff 32 \
--top_k 5 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Quarterly' \
--model_id m4_Quarterly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 64 \
--d_ff 64 \
--top_k 5 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Daily' \
--model_id m4_Daily \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 16 \
--d_ff 16 \
--top_k 5 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Weekly' \
--model_id m4_Weekly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 32 \
--d_ff 32 \
--top_k 5 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Hourly' \
--model_id m4_Hourly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 32 \
--d_ff 32 \
--top_k 5 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'

View File

@ -0,0 +1,135 @@
export CUDA_VISIBLE_DEVICES=1
model_name=Informer
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Monthly' \
--model_id m4_Monthly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Yearly' \
--model_id m4_Yearly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Quarterly' \
--model_id m4_Quarterly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Weekly' \
--model_id m4_Weekly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Daily' \
--model_id m4_Daily \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Hourly' \
--model_id m4_Hourly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'

View File

@ -0,0 +1,135 @@
export CUDA_VISIBLE_DEVICES=1
model_name=LightTS
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Monthly' \
--model_id m4_Monthly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Yearly' \
--model_id m4_Yearly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Quarterly' \
--model_id m4_Quarterly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Weekly' \
--model_id m4_Weekly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Daily' \
--model_id m4_Daily \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Hourly' \
--model_id m4_Hourly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'

View File

@ -0,0 +1,147 @@
export CUDA_VISIBLE_DEVICES=4
model_name=MICN
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Monthly' \
--model_id m4_Monthly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 32 \
--d_ff 32 \
--top_k 5 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Yearly' \
--model_id m4_Yearly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 16 \
--d_ff 32 \
--top_k 5 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Quarterly' \
--model_id m4_Quarterly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 64 \
--d_ff 64 \
--top_k 5 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Daily' \
--model_id m4_Daily \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 16 \
--d_ff 16 \
--top_k 5 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Weekly' \
--model_id m4_Weekly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 32 \
--d_ff 32 \
--top_k 5 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Hourly' \
--model_id m4_Hourly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 32 \
--d_ff 32 \
--top_k 5 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'

View File

@ -0,0 +1,135 @@
# export CUDA_VISIBLE_DEVICES=1
model_name=Mamba
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Monthly' \
--model_id m4_Monthly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--enc_in 1 \
--expand 2 \
--d_ff 16 \
--d_conv 4 \
--c_out 1 \
--batch_size 16 \
--d_model 128 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Yearly' \
--model_id m4_Yearly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--enc_in 1 \
--expand 2 \
--d_ff 16 \
--d_conv 4 \
--c_out 1 \
--batch_size 16 \
--d_model 128 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Quarterly' \
--model_id m4_Quarterly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--enc_in 1 \
--expand 2 \
--d_ff 16 \
--d_conv 4 \
--c_out 1 \
--batch_size 16 \
--d_model 128 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Weekly' \
--model_id m4_Weekly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--enc_in 1 \
--expand 2 \
--d_ff 16 \
--d_conv 4 \
--c_out 1 \
--batch_size 16 \
--d_model 128 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Daily' \
--model_id m4_Daily \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--enc_in 1 \
--expand 2 \
--d_ff 16 \
--d_conv 4 \
--c_out 1 \
--batch_size 16 \
--d_model 128 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Hourly' \
--model_id m4_Hourly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--enc_in 1 \
--expand 2 \
--d_ff 16 \
--d_conv 4 \
--c_out 1 \
--batch_size 16 \
--d_model 128 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'

View File

@ -0,0 +1,147 @@
export CUDA_VISIBLE_DEVICES=1
model_name=Nonstationary_Transformer
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Monthly' \
--model_id m4_Monthly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE' \
--p_hidden_dims 256 256 \
--p_hidden_layers 2
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Yearly' \
--model_id m4_Yearly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE' \
--p_hidden_dims 256 256 \
--p_hidden_layers 2
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Quarterly' \
--model_id m4_Quarterly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE' \
--p_hidden_dims 256 256 \
--p_hidden_layers 2
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Weekly' \
--model_id m4_Weekly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE' \
--p_hidden_dims 256 256 \
--p_hidden_layers 2
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Daily' \
--model_id m4_Daily \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE' \
--p_hidden_dims 256 256 \
--p_hidden_layers 2
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Hourly' \
--model_id m4_Hourly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE' \
--p_hidden_dims 256 256 \
--p_hidden_layers 2

View File

@ -0,0 +1,135 @@
export CUDA_VISIBLE_DEVICES=1
model_name=Pyraformer
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Monthly' \
--model_id m4_Monthly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Yearly' \
--model_id m4_Yearly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Quarterly' \
--model_id m4_Quarterly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Weekly' \
--model_id m4_Weekly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Daily' \
--model_id m4_Daily \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Hourly' \
--model_id m4_Hourly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'

View File

@ -0,0 +1,135 @@
export CUDA_VISIBLE_DEVICES=1
model_name=Reformer
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Monthly' \
--model_id m4_Monthly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Yearly' \
--model_id m4_Yearly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Quarterly' \
--model_id m4_Quarterly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Weekly' \
--model_id m4_Weekly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Daily' \
--model_id m4_Daily \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Hourly' \
--model_id m4_Hourly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'

View File

@ -0,0 +1,135 @@
#export CUDA_VISIBLE_DEVICES=1
model_name=MTSMixer
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Monthly' \
--model_id m4_Monthly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 16 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Yearly' \
--model_id m4_Yearly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 16 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Quarterly' \
--model_id m4_Quarterly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 16 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Weekly' \
--model_id m4_Weekly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 16 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Daily' \
--model_id m4_Daily \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 16 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Hourly' \
--model_id m4_Hourly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 16 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'

View File

@ -0,0 +1,180 @@
export CUDA_VISIBLE_DEVICES=0
model_name=TimeMixer
e_layers=4
down_sampling_layers=1
down_sampling_window=2
learning_rate=0.01
d_model=32
d_ff=32
batch_size=16
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Monthly' \
--model_id m4_Monthly \
--model $model_name \
--data m4 \
--features M \
--e_layers $e_layers \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 128 \
--d_model $d_model \
--d_ff 32 \
--des 'Exp' \
--itr 1 \
--learning_rate $learning_rate \
--train_epochs 50 \
--patience 20 \
--down_sampling_layers $down_sampling_layers \
--down_sampling_method avg \
--down_sampling_window $down_sampling_window \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Yearly' \
--model_id m4_Yearly \
--model $model_name \
--data m4 \
--features M \
--e_layers $e_layers \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 128 \
--d_model $d_model \
--d_ff 32 \
--des 'Exp' \
--itr 1 \
--learning_rate $learning_rate \
--train_epochs 50 \
--patience 20 \
--down_sampling_layers $down_sampling_layers \
--down_sampling_method avg \
--down_sampling_window $down_sampling_window \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Quarterly' \
--model_id m4_Quarterly \
--model $model_name \
--data m4 \
--features M \
--e_layers $e_layers \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 128 \
--d_model $d_model \
--d_ff 64 \
--des 'Exp' \
--itr 1 \
--learning_rate $learning_rate \
--train_epochs 50 \
--patience 20 \
--down_sampling_layers $down_sampling_layers \
--down_sampling_method avg \
--down_sampling_window $down_sampling_window \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Daily' \
--model_id m4_Daily \
--model $model_name \
--data m4 \
--features M \
--e_layers $e_layers \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 128 \
--d_model $d_model \
--d_ff 16 \
--des 'Exp' \
--itr 1 \
--learning_rate $learning_rate \
--train_epochs 50 \
--patience 20 \
--down_sampling_layers $down_sampling_layers \
--down_sampling_method avg \
--down_sampling_window $down_sampling_window \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Weekly' \
--model_id m4_Weekly \
--model $model_name \
--data m4 \
--features M \
--e_layers $e_layers \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 128 \
--d_model $d_model \
--d_ff 32 \
--des 'Exp' \
--itr 1 \
--learning_rate $learning_rate \
--train_epochs 50 \
--patience 20 \
--down_sampling_layers $down_sampling_layers \
--down_sampling_method avg \
--down_sampling_window $down_sampling_window \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Hourly' \
--model_id m4_Hourly \
--model $model_name \
--data m4 \
--features M \
--e_layers $e_layers \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 128 \
--d_model $d_model \
--d_ff 32 \
--des 'Exp' \
--itr 1 \
--learning_rate $learning_rate \
--train_epochs 50 \
--patience 20 \
--down_sampling_layers $down_sampling_layers \
--down_sampling_method avg \
--down_sampling_window $down_sampling_window \
--loss 'SMAPE'

View File

@ -0,0 +1,147 @@
export CUDA_VISIBLE_DEVICES=0
model_name=TimesNet
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Monthly' \
--model_id m4_Monthly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 32 \
--d_ff 32 \
--top_k 5 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Yearly' \
--model_id m4_Yearly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 16 \
--d_ff 32 \
--top_k 5 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Quarterly' \
--model_id m4_Quarterly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 64 \
--d_ff 64 \
--top_k 5 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Daily' \
--model_id m4_Daily \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 16 \
--d_ff 16 \
--top_k 5 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Weekly' \
--model_id m4_Weekly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 32 \
--d_ff 32 \
--top_k 5 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Hourly' \
--model_id m4_Hourly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 32 \
--d_ff 32 \
--top_k 5 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'

View File

@ -0,0 +1,135 @@
export CUDA_VISIBLE_DEVICES=1
model_name=Transformer
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Monthly' \
--model_id m4_Monthly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Yearly' \
--model_id m4_Yearly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Quarterly' \
--model_id m4_Quarterly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Weekly' \
--model_id m4_Weekly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Daily' \
--model_id m4_Daily \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Hourly' \
--model_id m4_Hourly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'

View File

@ -0,0 +1,135 @@
export CUDA_VISIBLE_DEVICES=0
model_name=iTransformer
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Monthly' \
--model_id m4_Monthly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Yearly' \
--model_id m4_Yearly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Quarterly' \
--model_id m4_Quarterly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Weekly' \
--model_id m4_Weekly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Daily' \
--model_id m4_Daily \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'
python -u run.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Hourly' \
--model_id m4_Hourly \
--model $model_name \
--data m4 \
--features M \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--batch_size 16 \
--d_model 512 \
--des 'Exp' \
--itr 1 \
--learning_rate 0.001 \
--loss 'SMAPE'