first commit
This commit is contained in:
@ -0,0 +1,28 @@
|
||||
export CUDA_VISIBLE_DEVICES=0
|
||||
|
||||
model_name=PatchTST
|
||||
|
||||
for aug in jitter scaling permutation magwarp timewarp windowslice windowwarp rotation spawner dtwwarp shapedtwwarp wdba discdtw discsdtw
|
||||
do
|
||||
echo using augmentation: ${aug}
|
||||
|
||||
python -u run.py \
|
||||
--task_name classification \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/EthanolConcentration/ \
|
||||
--model_id EthanolConcentration \
|
||||
--model $model_name \
|
||||
--data UEA \
|
||||
--e_layers 3 \
|
||||
--batch_size 16 \
|
||||
--d_model 128 \
|
||||
--d_ff 256 \
|
||||
--top_k 3 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--train_epochs 100 \
|
||||
--patience 10 \
|
||||
--augmentation_ratio 1 \
|
||||
--${aug}
|
||||
done
|
@ -0,0 +1,33 @@
|
||||
export CUDA_VISIBLE_DEVICES=0
|
||||
|
||||
model_name=PatchTST
|
||||
for aug in jitter scaling permutation magwarp timewarp windowslice windowwarp rotation spawner dtwwarp shapedtwwarp discdtw discsdtw
|
||||
do
|
||||
for pred_len in 96 192 336 720
|
||||
do
|
||||
echo using augmentation: ${aug}
|
||||
|
||||
python -u run.py \
|
||||
--task_name long_term_forecast \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/exchange_rate/ \
|
||||
--data_path exchange_rate.csv \
|
||||
--model_id Exchange_96_${pred_len} \
|
||||
--model $model_name \
|
||||
--data custom \
|
||||
--features M \
|
||||
--seq_len 96 \
|
||||
--label_len 48 \
|
||||
--pred_len ${pred_len} \
|
||||
--e_layers 2 \
|
||||
--d_layers 1 \
|
||||
--factor 3 \
|
||||
--enc_in 8 \
|
||||
--dec_in 8 \
|
||||
--c_out 8 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--augmentation_ratio 1 \
|
||||
--${aug}
|
||||
done
|
||||
done
|
97
scripts/long_term_forecast/AugmentSample/ReadMe.md
Normal file
97
scripts/long_term_forecast/AugmentSample/ReadMe.md
Normal file
@ -0,0 +1,97 @@
|
||||
# Augmentation Feature Roadbook
|
||||
|
||||
Hi there! For those who are interested in testing
|
||||
augmentation techniques in `Time-Series-Library`.
|
||||
|
||||
For now, we have embedded several augmentation methods
|
||||
in this repo. We are still collecting publicly available
|
||||
augmentation algorithms, and we appreciate your valuable
|
||||
advice!
|
||||
|
||||
```
|
||||
The Implemented Augmentation Methods
|
||||
1. jitter
|
||||
2. scaling
|
||||
3. permutation
|
||||
4. magwarp
|
||||
5. timewarp
|
||||
6. windowslice
|
||||
7. windowwarp
|
||||
8. rotation
|
||||
9. spawner
|
||||
10. dtwwarp
|
||||
11. shapedtwwarp
|
||||
12. wdba (Specially Designed for Classification tasks)
|
||||
13. discdtw
|
||||
```
|
||||
|
||||
## Usage
|
||||
|
||||
In this folder, we present two sample of shell scripts
|
||||
doing augmentation in `Forecasting` and `Classification`
|
||||
tasks.
|
||||
|
||||
Take `Forecasting` task for example, we test multiple
|
||||
augmentation algorithms on `EthanolConcentration` dataset
|
||||
(a subset of the popular classification benchmark `UEA`)
|
||||
using `PatchTST` model.
|
||||
|
||||
```shell
|
||||
export CUDA_VISIBLE_DEVICES=0
|
||||
|
||||
model_name=PatchTST
|
||||
|
||||
for aug in jitter scaling permutation magwarp timewarp windowslice windowwarp rotation spawner dtwwarp shapedtwwarp wdba discdtw discsdtw
|
||||
do
|
||||
echo using augmentation: ${aug}
|
||||
|
||||
python -u run.py \
|
||||
--task_name classification \
|
||||
--is_training 1 \
|
||||
--root_path ./dataset/EthanolConcentration/ \
|
||||
--model_id EthanolConcentration \
|
||||
--model $model_name \
|
||||
--data UEA \
|
||||
--e_layers 3 \
|
||||
--batch_size 16 \
|
||||
--d_model 128 \
|
||||
--d_ff 256 \
|
||||
--top_k 3 \
|
||||
--des 'Exp' \
|
||||
--itr 1 \
|
||||
--learning_rate 0.001 \
|
||||
--train_epochs 100 \
|
||||
--patience 10 \
|
||||
--augmentation_ratio 1 \
|
||||
--${aug}
|
||||
done
|
||||
```
|
||||
|
||||
Here, parameter `augmentation_ratio` represents how many
|
||||
times do we want to perform our augmentation method.
|
||||
Parameter `${aug}` represents a string of augmentation
|
||||
type label.
|
||||
|
||||
The example here only perform augmentation once, so we
|
||||
can set `augmentation_ratio` to `1`, followed by one
|
||||
augmentation type label. Trivially, you can set
|
||||
`augmentation_ratio` to an integer `num` followed by
|
||||
`num` augmentation type labels.
|
||||
|
||||
The augmentation code obeys the same prototype of
|
||||
`Time-Series-Library`. If you want to adjust other
|
||||
training parameters, feel free to add arguments to the
|
||||
shell scripts and play around. The full list of parameters
|
||||
can be seen in `run.py`.
|
||||
|
||||
## Contact Us!
|
||||
|
||||
This piece of code is written and maintained by
|
||||
[Yunzhong Qiu](https://github.com/DigitalLifeYZQiu).
|
||||
We thank [Haixu Wu](https://github.com/wuhaixu2016) and
|
||||
[Jiaxiang Dong](https://github.com/dongjiaxiang) for
|
||||
insightful discussion and solid support.
|
||||
|
||||
If you have difficulties or find bugs in our code, please
|
||||
contact us:
|
||||
- Email: qiuyz24@mails.tsinghua.edu.cn
|
Reference in New Issue
Block a user