first commit

This commit is contained in:
gameloader
2025-08-28 10:17:59 +00:00
commit d6dd462886
350 changed files with 39789 additions and 0 deletions

162
models/MambaSimple.py Normal file
View File

@ -0,0 +1,162 @@
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat, einsum
from layers.Embed import DataEmbedding
class Model(nn.Module):
"""
Mamba, linear-time sequence modeling with selective state spaces O(L)
Paper link: https://arxiv.org/abs/2312.00752
Implementation refernce: https://github.com/johnma2006/mamba-minimal/
"""
def __init__(self, configs):
super(Model, self).__init__()
self.task_name = configs.task_name
self.pred_len = configs.pred_len
self.d_inner = configs.d_model * configs.expand
self.dt_rank = math.ceil(configs.d_model / 16)
self.embedding = DataEmbedding(configs.enc_in, configs.d_model, configs.embed, configs.freq, configs.dropout)
self.layers = nn.ModuleList([ResidualBlock(configs, self.d_inner, self.dt_rank) for _ in range(configs.e_layers)])
self.norm = RMSNorm(configs.d_model)
self.out_layer = nn.Linear(configs.d_model, configs.c_out, bias=False)
def forecast(self, x_enc, x_mark_enc):
mean_enc = x_enc.mean(1, keepdim=True).detach()
x_enc = x_enc - mean_enc
std_enc = torch.sqrt(torch.var(x_enc, dim=1, keepdim=True, unbiased=False) + 1e-5).detach()
x_enc = x_enc / std_enc
x = self.embedding(x_enc, x_mark_enc)
for layer in self.layers:
x = layer(x)
x = self.norm(x)
x_out = self.out_layer(x)
x_out = x_out * std_enc + mean_enc
return x_out
def forward(self, x_enc, x_mark_enc, x_dec, x_mark_dec, mask=None):
if self.task_name in ['short_term_forecast', 'long_term_forecast']:
x_out = self.forecast(x_enc, x_mark_enc)
return x_out[:, -self.pred_len:, :]
class ResidualBlock(nn.Module):
def __init__(self, configs, d_inner, dt_rank):
super(ResidualBlock, self).__init__()
self.mixer = MambaBlock(configs, d_inner, dt_rank)
self.norm = RMSNorm(configs.d_model)
def forward(self, x):
output = self.mixer(self.norm(x)) + x
return output
class MambaBlock(nn.Module):
def __init__(self, configs, d_inner, dt_rank):
super(MambaBlock, self).__init__()
self.d_inner = d_inner
self.dt_rank = dt_rank
self.in_proj = nn.Linear(configs.d_model, self.d_inner * 2, bias=False)
self.conv1d = nn.Conv1d(
in_channels = self.d_inner,
out_channels = self.d_inner,
bias = True,
kernel_size = configs.d_conv,
padding = configs.d_conv - 1,
groups = self.d_inner
)
# takes in x and outputs the input-specific delta, B, C
self.x_proj = nn.Linear(self.d_inner, self.dt_rank + configs.d_ff * 2, bias=False)
# projects delta
self.dt_proj = nn.Linear(self.dt_rank, self.d_inner, bias=True)
A = repeat(torch.arange(1, configs.d_ff + 1), "n -> d n", d=self.d_inner).float()
self.A_log = nn.Parameter(torch.log(A))
self.D = nn.Parameter(torch.ones(self.d_inner))
self.out_proj = nn.Linear(self.d_inner, configs.d_model, bias=False)
def forward(self, x):
"""
Figure 3 in Section 3.4 in the paper
"""
(b, l, d) = x.shape
x_and_res = self.in_proj(x) # [B, L, 2 * d_inner]
(x, res) = x_and_res.split(split_size=[self.d_inner, self.d_inner], dim=-1)
x = rearrange(x, "b l d -> b d l")
x = self.conv1d(x)[:, :, :l]
x = rearrange(x, "b d l -> b l d")
x = F.silu(x)
y = self.ssm(x)
y = y * F.silu(res)
output = self.out_proj(y)
return output
def ssm(self, x):
"""
Algorithm 2 in Section 3.2 in the paper
"""
(d_in, n) = self.A_log.shape
A = -torch.exp(self.A_log.float()) # [d_in, n]
D = self.D.float() # [d_in]
x_dbl = self.x_proj(x) # [B, L, d_rank + 2 * d_ff]
(delta, B, C) = x_dbl.split(split_size=[self.dt_rank, n, n], dim=-1) # delta: [B, L, d_rank]; B, C: [B, L, n]
delta = F.softplus(self.dt_proj(delta)) # [B, L, d_in]
y = self.selective_scan(x, delta, A, B, C, D)
return y
def selective_scan(self, u, delta, A, B, C, D):
(b, l, d_in) = u.shape
n = A.shape[1]
deltaA = torch.exp(einsum(delta, A, "b l d, d n -> b l d n")) # A is discretized using zero-order hold (ZOH) discretization
deltaB_u = einsum(delta, B, u, "b l d, b l n, b l d -> b l d n") # B is discretized using a simplified Euler discretization instead of ZOH. From a discussion with authors: "A is the more important term and the performance doesn't change much with the simplification on B"
# selective scan, sequential instead of parallel
x = torch.zeros((b, d_in, n), device=deltaA.device)
ys = []
for i in range(l):
x = deltaA[:, i] * x + deltaB_u[:, i]
y = einsum(x, C[:, i, :], "b d n, b n -> b d")
ys.append(y)
y = torch.stack(ys, dim=1) # [B, L, d_in]
y = y + u * D
return y
class RMSNorm(nn.Module):
def __init__(self, d_model, eps=1e-5):
super(RMSNorm, self).__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(d_model))
def forward(self, x):
output = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) * self.weight
return output