first commit
This commit is contained in:
222
models/MICN.py
Normal file
222
models/MICN.py
Normal file
@ -0,0 +1,222 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from layers.Embed import DataEmbedding
|
||||
from layers.Autoformer_EncDec import series_decomp, series_decomp_multi
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
class MIC(nn.Module):
|
||||
"""
|
||||
MIC layer to extract local and global features
|
||||
"""
|
||||
|
||||
def __init__(self, feature_size=512, n_heads=8, dropout=0.05, decomp_kernel=[32], conv_kernel=[24],
|
||||
isometric_kernel=[18, 6], device='cuda'):
|
||||
super(MIC, self).__init__()
|
||||
self.conv_kernel = conv_kernel
|
||||
self.device = device
|
||||
|
||||
# isometric convolution
|
||||
self.isometric_conv = nn.ModuleList([nn.Conv1d(in_channels=feature_size, out_channels=feature_size,
|
||||
kernel_size=i, padding=0, stride=1)
|
||||
for i in isometric_kernel])
|
||||
|
||||
# downsampling convolution: padding=i//2, stride=i
|
||||
self.conv = nn.ModuleList([nn.Conv1d(in_channels=feature_size, out_channels=feature_size,
|
||||
kernel_size=i, padding=i // 2, stride=i)
|
||||
for i in conv_kernel])
|
||||
|
||||
# upsampling convolution
|
||||
self.conv_trans = nn.ModuleList([nn.ConvTranspose1d(in_channels=feature_size, out_channels=feature_size,
|
||||
kernel_size=i, padding=0, stride=i)
|
||||
for i in conv_kernel])
|
||||
|
||||
self.decomp = nn.ModuleList([series_decomp(k) for k in decomp_kernel])
|
||||
self.merge = torch.nn.Conv2d(in_channels=feature_size, out_channels=feature_size,
|
||||
kernel_size=(len(self.conv_kernel), 1))
|
||||
|
||||
# feedforward network
|
||||
self.conv1 = nn.Conv1d(in_channels=feature_size, out_channels=feature_size * 4, kernel_size=1)
|
||||
self.conv2 = nn.Conv1d(in_channels=feature_size * 4, out_channels=feature_size, kernel_size=1)
|
||||
self.norm1 = nn.LayerNorm(feature_size)
|
||||
self.norm2 = nn.LayerNorm(feature_size)
|
||||
|
||||
self.norm = torch.nn.LayerNorm(feature_size)
|
||||
self.act = torch.nn.Tanh()
|
||||
self.drop = torch.nn.Dropout(0.05)
|
||||
|
||||
def conv_trans_conv(self, input, conv1d, conv1d_trans, isometric):
|
||||
batch, seq_len, channel = input.shape
|
||||
x = input.permute(0, 2, 1)
|
||||
|
||||
# downsampling convolution
|
||||
x1 = self.drop(self.act(conv1d(x)))
|
||||
x = x1
|
||||
|
||||
# isometric convolution
|
||||
zeros = torch.zeros((x.shape[0], x.shape[1], x.shape[2] - 1), device=self.device)
|
||||
x = torch.cat((zeros, x), dim=-1)
|
||||
x = self.drop(self.act(isometric(x)))
|
||||
x = self.norm((x + x1).permute(0, 2, 1)).permute(0, 2, 1)
|
||||
|
||||
# upsampling convolution
|
||||
x = self.drop(self.act(conv1d_trans(x)))
|
||||
x = x[:, :, :seq_len] # truncate
|
||||
|
||||
x = self.norm(x.permute(0, 2, 1) + input)
|
||||
return x
|
||||
|
||||
def forward(self, src):
|
||||
self.device = src.device
|
||||
# multi-scale
|
||||
multi = []
|
||||
for i in range(len(self.conv_kernel)):
|
||||
src_out, trend1 = self.decomp[i](src)
|
||||
src_out = self.conv_trans_conv(src_out, self.conv[i], self.conv_trans[i], self.isometric_conv[i])
|
||||
multi.append(src_out)
|
||||
|
||||
# merge
|
||||
mg = torch.tensor([], device=self.device)
|
||||
for i in range(len(self.conv_kernel)):
|
||||
mg = torch.cat((mg, multi[i].unsqueeze(1).to(self.device)), dim=1)
|
||||
mg = self.merge(mg.permute(0, 3, 1, 2)).squeeze(-2).permute(0, 2, 1)
|
||||
|
||||
y = self.norm1(mg)
|
||||
y = self.conv2(self.conv1(y.transpose(-1, 1))).transpose(-1, 1)
|
||||
|
||||
return self.norm2(mg + y)
|
||||
|
||||
|
||||
class SeasonalPrediction(nn.Module):
|
||||
def __init__(self, embedding_size=512, n_heads=8, dropout=0.05, d_layers=1, decomp_kernel=[32], c_out=1,
|
||||
conv_kernel=[2, 4], isometric_kernel=[18, 6], device='cuda'):
|
||||
super(SeasonalPrediction, self).__init__()
|
||||
|
||||
self.mic = nn.ModuleList([MIC(feature_size=embedding_size, n_heads=n_heads,
|
||||
decomp_kernel=decomp_kernel, conv_kernel=conv_kernel,
|
||||
isometric_kernel=isometric_kernel, device=device)
|
||||
for i in range(d_layers)])
|
||||
|
||||
self.projection = nn.Linear(embedding_size, c_out)
|
||||
|
||||
def forward(self, dec):
|
||||
for mic_layer in self.mic:
|
||||
dec = mic_layer(dec)
|
||||
return self.projection(dec)
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
"""
|
||||
Paper link: https://openreview.net/pdf?id=zt53IDUR1U
|
||||
"""
|
||||
def __init__(self, configs, conv_kernel=[12, 16]):
|
||||
"""
|
||||
conv_kernel: downsampling and upsampling convolution kernel_size
|
||||
"""
|
||||
super(Model, self).__init__()
|
||||
|
||||
decomp_kernel = [] # kernel of decomposition operation
|
||||
isometric_kernel = [] # kernel of isometric convolution
|
||||
for ii in conv_kernel:
|
||||
if ii % 2 == 0: # the kernel of decomposition operation must be odd
|
||||
decomp_kernel.append(ii + 1)
|
||||
isometric_kernel.append((configs.seq_len + configs.pred_len + ii) // ii)
|
||||
else:
|
||||
decomp_kernel.append(ii)
|
||||
isometric_kernel.append((configs.seq_len + configs.pred_len + ii - 1) // ii)
|
||||
|
||||
self.task_name = configs.task_name
|
||||
self.pred_len = configs.pred_len
|
||||
self.seq_len = configs.seq_len
|
||||
|
||||
# Multiple Series decomposition block from FEDformer
|
||||
self.decomp_multi = series_decomp_multi(decomp_kernel)
|
||||
|
||||
# embedding
|
||||
self.dec_embedding = DataEmbedding(configs.enc_in, configs.d_model, configs.embed, configs.freq,
|
||||
configs.dropout)
|
||||
|
||||
self.conv_trans = SeasonalPrediction(embedding_size=configs.d_model, n_heads=configs.n_heads,
|
||||
dropout=configs.dropout,
|
||||
d_layers=configs.d_layers, decomp_kernel=decomp_kernel,
|
||||
c_out=configs.c_out, conv_kernel=conv_kernel,
|
||||
isometric_kernel=isometric_kernel, device=torch.device('cuda:0'))
|
||||
if self.task_name == 'long_term_forecast' or self.task_name == 'short_term_forecast':
|
||||
# refer to DLinear
|
||||
self.regression = nn.Linear(configs.seq_len, configs.pred_len)
|
||||
self.regression.weight = nn.Parameter(
|
||||
(1 / configs.pred_len) * torch.ones([configs.pred_len, configs.seq_len]),
|
||||
requires_grad=True)
|
||||
if self.task_name == 'imputation':
|
||||
self.projection = nn.Linear(configs.d_model, configs.c_out, bias=True)
|
||||
if self.task_name == 'anomaly_detection':
|
||||
self.projection = nn.Linear(configs.d_model, configs.c_out, bias=True)
|
||||
if self.task_name == 'classification':
|
||||
self.act = F.gelu
|
||||
self.dropout = nn.Dropout(configs.dropout)
|
||||
self.projection = nn.Linear(configs.c_out * configs.seq_len, configs.num_class)
|
||||
|
||||
def forecast(self, x_enc, x_mark_enc, x_dec, x_mark_dec):
|
||||
# Multi-scale Hybrid Decomposition
|
||||
seasonal_init_enc, trend = self.decomp_multi(x_enc)
|
||||
trend = self.regression(trend.permute(0, 2, 1)).permute(0, 2, 1)
|
||||
|
||||
# embedding
|
||||
zeros = torch.zeros([x_dec.shape[0], self.pred_len, x_dec.shape[2]], device=x_enc.device)
|
||||
seasonal_init_dec = torch.cat([seasonal_init_enc[:, -self.seq_len:, :], zeros], dim=1)
|
||||
dec_out = self.dec_embedding(seasonal_init_dec, x_mark_dec)
|
||||
dec_out = self.conv_trans(dec_out)
|
||||
dec_out = dec_out[:, -self.pred_len:, :] + trend[:, -self.pred_len:, :]
|
||||
return dec_out
|
||||
|
||||
def imputation(self, x_enc, x_mark_enc, x_dec, x_mark_dec, mask):
|
||||
# Multi-scale Hybrid Decomposition
|
||||
seasonal_init_enc, trend = self.decomp_multi(x_enc)
|
||||
|
||||
# embedding
|
||||
dec_out = self.dec_embedding(seasonal_init_enc, x_mark_dec)
|
||||
dec_out = self.conv_trans(dec_out)
|
||||
dec_out = dec_out + trend
|
||||
return dec_out
|
||||
|
||||
def anomaly_detection(self, x_enc):
|
||||
# Multi-scale Hybrid Decomposition
|
||||
seasonal_init_enc, trend = self.decomp_multi(x_enc)
|
||||
|
||||
# embedding
|
||||
dec_out = self.dec_embedding(seasonal_init_enc, None)
|
||||
dec_out = self.conv_trans(dec_out)
|
||||
dec_out = dec_out + trend
|
||||
return dec_out
|
||||
|
||||
def classification(self, x_enc, x_mark_enc):
|
||||
# Multi-scale Hybrid Decomposition
|
||||
seasonal_init_enc, trend = self.decomp_multi(x_enc)
|
||||
# embedding
|
||||
dec_out = self.dec_embedding(seasonal_init_enc, None)
|
||||
dec_out = self.conv_trans(dec_out)
|
||||
dec_out = dec_out + trend
|
||||
|
||||
# Output from Non-stationary Transformer
|
||||
output = self.act(dec_out) # the output transformer encoder/decoder embeddings don't include non-linearity
|
||||
output = self.dropout(output)
|
||||
output = output * x_mark_enc.unsqueeze(-1) # zero-out padding embeddings
|
||||
output = output.reshape(output.shape[0], -1) # (batch_size, seq_length * d_model)
|
||||
output = self.projection(output) # (batch_size, num_classes)
|
||||
return output
|
||||
|
||||
def forward(self, x_enc, x_mark_enc, x_dec, x_mark_dec, mask=None):
|
||||
if self.task_name == 'long_term_forecast' or self.task_name == 'short_term_forecast':
|
||||
dec_out = self.forecast(x_enc, x_mark_enc, x_dec, x_mark_dec)
|
||||
return dec_out[:, -self.pred_len:, :] # [B, L, D]
|
||||
if self.task_name == 'imputation':
|
||||
dec_out = self.imputation(
|
||||
x_enc, x_mark_enc, x_dec, x_mark_dec, mask)
|
||||
return dec_out # [B, L, D]
|
||||
if self.task_name == 'anomaly_detection':
|
||||
dec_out = self.anomaly_detection(x_enc)
|
||||
return dec_out # [B, L, D]
|
||||
if self.task_name == 'classification':
|
||||
dec_out = self.classification(x_enc, x_mark_enc)
|
||||
return dec_out # [B, N]
|
||||
return None
|
Reference in New Issue
Block a user