first commit
This commit is contained in:
147
models/Informer.py
Normal file
147
models/Informer.py
Normal file
@ -0,0 +1,147 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from layers.Transformer_EncDec import Decoder, DecoderLayer, Encoder, EncoderLayer, ConvLayer
|
||||
from layers.SelfAttention_Family import ProbAttention, AttentionLayer
|
||||
from layers.Embed import DataEmbedding
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
"""
|
||||
Informer with Propspare attention in O(LlogL) complexity
|
||||
Paper link: https://ojs.aaai.org/index.php/AAAI/article/view/17325/17132
|
||||
"""
|
||||
|
||||
def __init__(self, configs):
|
||||
super(Model, self).__init__()
|
||||
self.task_name = configs.task_name
|
||||
self.pred_len = configs.pred_len
|
||||
self.label_len = configs.label_len
|
||||
|
||||
# Embedding
|
||||
self.enc_embedding = DataEmbedding(configs.enc_in, configs.d_model, configs.embed, configs.freq,
|
||||
configs.dropout)
|
||||
self.dec_embedding = DataEmbedding(configs.dec_in, configs.d_model, configs.embed, configs.freq,
|
||||
configs.dropout)
|
||||
|
||||
# Encoder
|
||||
self.encoder = Encoder(
|
||||
[
|
||||
EncoderLayer(
|
||||
AttentionLayer(
|
||||
ProbAttention(False, configs.factor, attention_dropout=configs.dropout,
|
||||
output_attention=False),
|
||||
configs.d_model, configs.n_heads),
|
||||
configs.d_model,
|
||||
configs.d_ff,
|
||||
dropout=configs.dropout,
|
||||
activation=configs.activation
|
||||
) for l in range(configs.e_layers)
|
||||
],
|
||||
[
|
||||
ConvLayer(
|
||||
configs.d_model
|
||||
) for l in range(configs.e_layers - 1)
|
||||
] if configs.distil and ('forecast' in configs.task_name) else None,
|
||||
norm_layer=torch.nn.LayerNorm(configs.d_model)
|
||||
)
|
||||
# Decoder
|
||||
self.decoder = Decoder(
|
||||
[
|
||||
DecoderLayer(
|
||||
AttentionLayer(
|
||||
ProbAttention(True, configs.factor, attention_dropout=configs.dropout, output_attention=False),
|
||||
configs.d_model, configs.n_heads),
|
||||
AttentionLayer(
|
||||
ProbAttention(False, configs.factor, attention_dropout=configs.dropout, output_attention=False),
|
||||
configs.d_model, configs.n_heads),
|
||||
configs.d_model,
|
||||
configs.d_ff,
|
||||
dropout=configs.dropout,
|
||||
activation=configs.activation,
|
||||
)
|
||||
for l in range(configs.d_layers)
|
||||
],
|
||||
norm_layer=torch.nn.LayerNorm(configs.d_model),
|
||||
projection=nn.Linear(configs.d_model, configs.c_out, bias=True)
|
||||
)
|
||||
if self.task_name == 'imputation':
|
||||
self.projection = nn.Linear(configs.d_model, configs.c_out, bias=True)
|
||||
if self.task_name == 'anomaly_detection':
|
||||
self.projection = nn.Linear(configs.d_model, configs.c_out, bias=True)
|
||||
if self.task_name == 'classification':
|
||||
self.act = F.gelu
|
||||
self.dropout = nn.Dropout(configs.dropout)
|
||||
self.projection = nn.Linear(configs.d_model * configs.seq_len, configs.num_class)
|
||||
|
||||
def long_forecast(self, x_enc, x_mark_enc, x_dec, x_mark_dec):
|
||||
enc_out = self.enc_embedding(x_enc, x_mark_enc)
|
||||
dec_out = self.dec_embedding(x_dec, x_mark_dec)
|
||||
enc_out, attns = self.encoder(enc_out, attn_mask=None)
|
||||
|
||||
dec_out = self.decoder(dec_out, enc_out, x_mask=None, cross_mask=None)
|
||||
|
||||
return dec_out # [B, L, D]
|
||||
|
||||
def short_forecast(self, x_enc, x_mark_enc, x_dec, x_mark_dec):
|
||||
# Normalization
|
||||
mean_enc = x_enc.mean(1, keepdim=True).detach() # B x 1 x E
|
||||
x_enc = x_enc - mean_enc
|
||||
std_enc = torch.sqrt(torch.var(x_enc, dim=1, keepdim=True, unbiased=False) + 1e-5).detach() # B x 1 x E
|
||||
x_enc = x_enc / std_enc
|
||||
|
||||
enc_out = self.enc_embedding(x_enc, x_mark_enc)
|
||||
dec_out = self.dec_embedding(x_dec, x_mark_dec)
|
||||
enc_out, attns = self.encoder(enc_out, attn_mask=None)
|
||||
|
||||
dec_out = self.decoder(dec_out, enc_out, x_mask=None, cross_mask=None)
|
||||
|
||||
dec_out = dec_out * std_enc + mean_enc
|
||||
return dec_out # [B, L, D]
|
||||
|
||||
def imputation(self, x_enc, x_mark_enc, x_dec, x_mark_dec, mask):
|
||||
# enc
|
||||
enc_out = self.enc_embedding(x_enc, x_mark_enc)
|
||||
enc_out, attns = self.encoder(enc_out, attn_mask=None)
|
||||
# final
|
||||
dec_out = self.projection(enc_out)
|
||||
return dec_out
|
||||
|
||||
def anomaly_detection(self, x_enc):
|
||||
# enc
|
||||
enc_out = self.enc_embedding(x_enc, None)
|
||||
enc_out, attns = self.encoder(enc_out, attn_mask=None)
|
||||
# final
|
||||
dec_out = self.projection(enc_out)
|
||||
return dec_out
|
||||
|
||||
def classification(self, x_enc, x_mark_enc):
|
||||
# enc
|
||||
enc_out = self.enc_embedding(x_enc, None)
|
||||
enc_out, attns = self.encoder(enc_out, attn_mask=None)
|
||||
|
||||
# Output
|
||||
output = self.act(enc_out) # the output transformer encoder/decoder embeddings don't include non-linearity
|
||||
output = self.dropout(output)
|
||||
output = output * x_mark_enc.unsqueeze(-1) # zero-out padding embeddings
|
||||
output = output.reshape(output.shape[0], -1) # (batch_size, seq_length * d_model)
|
||||
output = self.projection(output) # (batch_size, num_classes)
|
||||
return output
|
||||
|
||||
def forward(self, x_enc, x_mark_enc, x_dec, x_mark_dec, mask=None):
|
||||
if self.task_name == 'long_term_forecast':
|
||||
dec_out = self.long_forecast(x_enc, x_mark_enc, x_dec, x_mark_dec)
|
||||
return dec_out[:, -self.pred_len:, :] # [B, L, D]
|
||||
if self.task_name == 'short_term_forecast':
|
||||
dec_out = self.short_forecast(x_enc, x_mark_enc, x_dec, x_mark_dec)
|
||||
return dec_out[:, -self.pred_len:, :] # [B, L, D]
|
||||
if self.task_name == 'imputation':
|
||||
dec_out = self.imputation(x_enc, x_mark_enc, x_dec, x_mark_dec, mask)
|
||||
return dec_out # [B, L, D]
|
||||
if self.task_name == 'anomaly_detection':
|
||||
dec_out = self.anomaly_detection(x_enc)
|
||||
return dec_out # [B, L, D]
|
||||
if self.task_name == 'classification':
|
||||
dec_out = self.classification(x_enc, x_mark_enc)
|
||||
return dec_out # [B, N]
|
||||
return None
|
Reference in New Issue
Block a user