first commit
This commit is contained in:
268
models/FiLM.py
Normal file
268
models/FiLM.py
Normal file
@ -0,0 +1,268 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import numpy as np
|
||||
from scipy import signal
|
||||
from scipy import special as ss
|
||||
|
||||
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
|
||||
def transition(N):
|
||||
Q = np.arange(N, dtype=np.float64)
|
||||
R = (2 * Q + 1)[:, None] # / theta
|
||||
j, i = np.meshgrid(Q, Q)
|
||||
A = np.where(i < j, -1, (-1.) ** (i - j + 1)) * R
|
||||
B = (-1.) ** Q[:, None] * R
|
||||
return A, B
|
||||
|
||||
|
||||
class HiPPO_LegT(nn.Module):
|
||||
def __init__(self, N, dt=1.0, discretization='bilinear'):
|
||||
"""
|
||||
N: the order of the HiPPO projection
|
||||
dt: discretization step size - should be roughly inverse to the length of the sequence
|
||||
"""
|
||||
super(HiPPO_LegT, self).__init__()
|
||||
self.N = N
|
||||
A, B = transition(N)
|
||||
C = np.ones((1, N))
|
||||
D = np.zeros((1,))
|
||||
A, B, _, _, _ = signal.cont2discrete((A, B, C, D), dt=dt, method=discretization)
|
||||
|
||||
B = B.squeeze(-1)
|
||||
|
||||
self.register_buffer('A', torch.Tensor(A).to(device))
|
||||
self.register_buffer('B', torch.Tensor(B).to(device))
|
||||
vals = np.arange(0.0, 1.0, dt)
|
||||
self.register_buffer('eval_matrix', torch.Tensor(
|
||||
ss.eval_legendre(np.arange(N)[:, None], 1 - 2 * vals).T).to(device))
|
||||
|
||||
def forward(self, inputs):
|
||||
"""
|
||||
inputs : (length, ...)
|
||||
output : (length, ..., N) where N is the order of the HiPPO projection
|
||||
"""
|
||||
c = torch.zeros(inputs.shape[:-1] + tuple([self.N])).to(device)
|
||||
cs = []
|
||||
for f in inputs.permute([-1, 0, 1]):
|
||||
f = f.unsqueeze(-1)
|
||||
new = f @ self.B.unsqueeze(0)
|
||||
c = F.linear(c, self.A) + new
|
||||
cs.append(c)
|
||||
return torch.stack(cs, dim=0)
|
||||
|
||||
def reconstruct(self, c):
|
||||
return (self.eval_matrix @ c.unsqueeze(-1)).squeeze(-1)
|
||||
|
||||
|
||||
class SpectralConv1d(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, seq_len, ratio=0.5):
|
||||
"""
|
||||
1D Fourier layer. It does FFT, linear transform, and Inverse FFT.
|
||||
"""
|
||||
super(SpectralConv1d, self).__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.ratio = ratio
|
||||
self.modes = min(32, seq_len // 2)
|
||||
self.index = list(range(0, self.modes))
|
||||
|
||||
self.scale = (1 / (in_channels * out_channels))
|
||||
self.weights_real = nn.Parameter(
|
||||
self.scale * torch.rand(in_channels, out_channels, len(self.index), dtype=torch.float))
|
||||
self.weights_imag = nn.Parameter(
|
||||
self.scale * torch.rand(in_channels, out_channels, len(self.index), dtype=torch.float))
|
||||
|
||||
def compl_mul1d(self, order, x, weights_real, weights_imag):
|
||||
return torch.complex(torch.einsum(order, x.real, weights_real) - torch.einsum(order, x.imag, weights_imag),
|
||||
torch.einsum(order, x.real, weights_imag) + torch.einsum(order, x.imag, weights_real))
|
||||
|
||||
def forward(self, x):
|
||||
B, H, E, N = x.shape
|
||||
x_ft = torch.fft.rfft(x)
|
||||
out_ft = torch.zeros(B, H, self.out_channels, x.size(-1) // 2 + 1, device=x.device, dtype=torch.cfloat)
|
||||
a = x_ft[:, :, :, :self.modes]
|
||||
out_ft[:, :, :, :self.modes] = self.compl_mul1d("bjix,iox->bjox", a, self.weights_real, self.weights_imag)
|
||||
x = torch.fft.irfft(out_ft, n=x.size(-1))
|
||||
return x
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
"""
|
||||
Paper link: https://arxiv.org/abs/2205.08897
|
||||
"""
|
||||
def __init__(self, configs):
|
||||
super(Model, self).__init__()
|
||||
self.task_name = configs.task_name
|
||||
self.configs = configs
|
||||
self.seq_len = configs.seq_len
|
||||
self.label_len = configs.label_len
|
||||
self.pred_len = configs.seq_len if configs.pred_len == 0 else configs.pred_len
|
||||
|
||||
self.seq_len_all = self.seq_len + self.label_len
|
||||
|
||||
self.layers = configs.e_layers
|
||||
self.enc_in = configs.enc_in
|
||||
self.e_layers = configs.e_layers
|
||||
# b, s, f means b, f
|
||||
self.affine_weight = nn.Parameter(torch.ones(1, 1, configs.enc_in))
|
||||
self.affine_bias = nn.Parameter(torch.zeros(1, 1, configs.enc_in))
|
||||
|
||||
self.multiscale = [1, 2, 4]
|
||||
self.window_size = [256]
|
||||
configs.ratio = 0.5
|
||||
self.legts = nn.ModuleList(
|
||||
[HiPPO_LegT(N=n, dt=1. / self.pred_len / i) for n in self.window_size for i in self.multiscale])
|
||||
self.spec_conv_1 = nn.ModuleList([SpectralConv1d(in_channels=n, out_channels=n,
|
||||
seq_len=min(self.pred_len, self.seq_len),
|
||||
ratio=configs.ratio) for n in
|
||||
self.window_size for _ in range(len(self.multiscale))])
|
||||
self.mlp = nn.Linear(len(self.multiscale) * len(self.window_size), 1)
|
||||
|
||||
if self.task_name == 'imputation' or self.task_name == 'anomaly_detection':
|
||||
self.projection = nn.Linear(
|
||||
configs.d_model, configs.c_out, bias=True)
|
||||
if self.task_name == 'classification':
|
||||
self.act = F.gelu
|
||||
self.dropout = nn.Dropout(configs.dropout)
|
||||
self.projection = nn.Linear(
|
||||
configs.enc_in * configs.seq_len, configs.num_class)
|
||||
|
||||
def forecast(self, x_enc, x_mark_enc, x_dec_true, x_mark_dec):
|
||||
# Normalization from Non-stationary Transformer
|
||||
means = x_enc.mean(1, keepdim=True).detach()
|
||||
x_enc = x_enc - means
|
||||
stdev = torch.sqrt(torch.var(x_enc, dim=1, keepdim=True, unbiased=False) + 1e-5).detach()
|
||||
x_enc /= stdev
|
||||
|
||||
x_enc = x_enc * self.affine_weight + self.affine_bias
|
||||
x_decs = []
|
||||
jump_dist = 0
|
||||
for i in range(0, len(self.multiscale) * len(self.window_size)):
|
||||
x_in_len = self.multiscale[i % len(self.multiscale)] * self.pred_len
|
||||
x_in = x_enc[:, -x_in_len:]
|
||||
legt = self.legts[i]
|
||||
x_in_c = legt(x_in.transpose(1, 2)).permute([1, 2, 3, 0])[:, :, :, jump_dist:]
|
||||
out1 = self.spec_conv_1[i](x_in_c)
|
||||
if self.seq_len >= self.pred_len:
|
||||
x_dec_c = out1.transpose(2, 3)[:, :, self.pred_len - 1 - jump_dist, :]
|
||||
else:
|
||||
x_dec_c = out1.transpose(2, 3)[:, :, -1, :]
|
||||
x_dec = x_dec_c @ legt.eval_matrix[-self.pred_len:, :].T
|
||||
x_decs.append(x_dec)
|
||||
x_dec = torch.stack(x_decs, dim=-1)
|
||||
x_dec = self.mlp(x_dec).squeeze(-1).permute(0, 2, 1)
|
||||
|
||||
# De-Normalization from Non-stationary Transformer
|
||||
x_dec = x_dec - self.affine_bias
|
||||
x_dec = x_dec / (self.affine_weight + 1e-10)
|
||||
x_dec = x_dec * stdev
|
||||
x_dec = x_dec + means
|
||||
return x_dec
|
||||
|
||||
def imputation(self, x_enc, x_mark_enc, x_dec, x_mark_dec, mask):
|
||||
# Normalization from Non-stationary Transformer
|
||||
means = x_enc.mean(1, keepdim=True).detach()
|
||||
x_enc = x_enc - means
|
||||
stdev = torch.sqrt(torch.var(x_enc, dim=1, keepdim=True, unbiased=False) + 1e-5).detach()
|
||||
x_enc /= stdev
|
||||
|
||||
x_enc = x_enc * self.affine_weight + self.affine_bias
|
||||
x_decs = []
|
||||
jump_dist = 0
|
||||
for i in range(0, len(self.multiscale) * len(self.window_size)):
|
||||
x_in_len = self.multiscale[i % len(self.multiscale)] * self.pred_len
|
||||
x_in = x_enc[:, -x_in_len:]
|
||||
legt = self.legts[i]
|
||||
x_in_c = legt(x_in.transpose(1, 2)).permute([1, 2, 3, 0])[:, :, :, jump_dist:]
|
||||
out1 = self.spec_conv_1[i](x_in_c)
|
||||
if self.seq_len >= self.pred_len:
|
||||
x_dec_c = out1.transpose(2, 3)[:, :, self.pred_len - 1 - jump_dist, :]
|
||||
else:
|
||||
x_dec_c = out1.transpose(2, 3)[:, :, -1, :]
|
||||
x_dec = x_dec_c @ legt.eval_matrix[-self.pred_len:, :].T
|
||||
x_decs.append(x_dec)
|
||||
x_dec = torch.stack(x_decs, dim=-1)
|
||||
x_dec = self.mlp(x_dec).squeeze(-1).permute(0, 2, 1)
|
||||
|
||||
# De-Normalization from Non-stationary Transformer
|
||||
x_dec = x_dec - self.affine_bias
|
||||
x_dec = x_dec / (self.affine_weight + 1e-10)
|
||||
x_dec = x_dec * stdev
|
||||
x_dec = x_dec + means
|
||||
return x_dec
|
||||
|
||||
def anomaly_detection(self, x_enc):
|
||||
# Normalization from Non-stationary Transformer
|
||||
means = x_enc.mean(1, keepdim=True).detach()
|
||||
x_enc = x_enc - means
|
||||
stdev = torch.sqrt(torch.var(x_enc, dim=1, keepdim=True, unbiased=False) + 1e-5).detach()
|
||||
x_enc /= stdev
|
||||
|
||||
x_enc = x_enc * self.affine_weight + self.affine_bias
|
||||
x_decs = []
|
||||
jump_dist = 0
|
||||
for i in range(0, len(self.multiscale) * len(self.window_size)):
|
||||
x_in_len = self.multiscale[i % len(self.multiscale)] * self.pred_len
|
||||
x_in = x_enc[:, -x_in_len:]
|
||||
legt = self.legts[i]
|
||||
x_in_c = legt(x_in.transpose(1, 2)).permute([1, 2, 3, 0])[:, :, :, jump_dist:]
|
||||
out1 = self.spec_conv_1[i](x_in_c)
|
||||
if self.seq_len >= self.pred_len:
|
||||
x_dec_c = out1.transpose(2, 3)[:, :, self.pred_len - 1 - jump_dist, :]
|
||||
else:
|
||||
x_dec_c = out1.transpose(2, 3)[:, :, -1, :]
|
||||
x_dec = x_dec_c @ legt.eval_matrix[-self.pred_len:, :].T
|
||||
x_decs.append(x_dec)
|
||||
x_dec = torch.stack(x_decs, dim=-1)
|
||||
x_dec = self.mlp(x_dec).squeeze(-1).permute(0, 2, 1)
|
||||
|
||||
# De-Normalization from Non-stationary Transformer
|
||||
x_dec = x_dec - self.affine_bias
|
||||
x_dec = x_dec / (self.affine_weight + 1e-10)
|
||||
x_dec = x_dec * stdev
|
||||
x_dec = x_dec + means
|
||||
return x_dec
|
||||
|
||||
def classification(self, x_enc, x_mark_enc):
|
||||
x_enc = x_enc * self.affine_weight + self.affine_bias
|
||||
x_decs = []
|
||||
jump_dist = 0
|
||||
for i in range(0, len(self.multiscale) * len(self.window_size)):
|
||||
x_in_len = self.multiscale[i % len(self.multiscale)] * self.pred_len
|
||||
x_in = x_enc[:, -x_in_len:]
|
||||
legt = self.legts[i]
|
||||
x_in_c = legt(x_in.transpose(1, 2)).permute([1, 2, 3, 0])[:, :, :, jump_dist:]
|
||||
out1 = self.spec_conv_1[i](x_in_c)
|
||||
if self.seq_len >= self.pred_len:
|
||||
x_dec_c = out1.transpose(2, 3)[:, :, self.pred_len - 1 - jump_dist, :]
|
||||
else:
|
||||
x_dec_c = out1.transpose(2, 3)[:, :, -1, :]
|
||||
x_dec = x_dec_c @ legt.eval_matrix[-self.pred_len:, :].T
|
||||
x_decs.append(x_dec)
|
||||
x_dec = torch.stack(x_decs, dim=-1)
|
||||
x_dec = self.mlp(x_dec).squeeze(-1).permute(0, 2, 1)
|
||||
|
||||
# Output from Non-stationary Transformer
|
||||
output = self.act(x_dec)
|
||||
output = self.dropout(output)
|
||||
output = output * x_mark_enc.unsqueeze(-1)
|
||||
output = output.reshape(output.shape[0], -1)
|
||||
output = self.projection(output)
|
||||
return output
|
||||
|
||||
def forward(self, x_enc, x_mark_enc, x_dec, x_mark_dec, mask=None):
|
||||
if self.task_name == 'long_term_forecast' or self.task_name == 'short_term_forecast':
|
||||
dec_out = self.forecast(x_enc, x_mark_enc, x_dec, x_mark_dec)
|
||||
return dec_out[:, -self.pred_len:, :] # [B, L, D]
|
||||
if self.task_name == 'imputation':
|
||||
dec_out = self.imputation(x_enc, x_mark_enc, x_dec, x_mark_dec, mask)
|
||||
return dec_out # [B, L, D]
|
||||
if self.task_name == 'anomaly_detection':
|
||||
dec_out = self.anomaly_detection(x_enc)
|
||||
return dec_out # [B, L, D]
|
||||
if self.task_name == 'classification':
|
||||
dec_out = self.classification(x_enc, x_mark_enc)
|
||||
return dec_out # [B, N]
|
||||
return None
|
Reference in New Issue
Block a user